Preliminary Foundation Design

Transcription

Preliminary Foundation Design
Preliminary Foundation Design
N100/3300 R75 IEC1a (NCV/CCV)
Gravity foundation (circular)
Country specific: South Africa
Document published in electronic form. Original at TSOE.
© Nordex Energy GmbH, Langenhorner Chaussee 600, D-22419 Hamburg, Germany
all richts reserved. Observe protection notice ISO 16016.
N100/3300 R75 MT5 IEC1a - South Africa
(c) Nordex Energy GmbH
1/6
Preliminary Foundation Design
Index
1
2
3
4
5
General turbine information
Standards and regulations
Assumptions
Preliminary design
Quantities
………………………………………………………………………………
………………………………………………………………………………
………………………………………………………………………………
………………………………………………………………………………
………………………………………………………………………………
3
3
3
4
6
DISCLAIMER
Nordex has performed the preliminary foundation design based on the assumptions as described in
this document. Nordex do not make any representations or warranty, expressed or otherwise as to the
accuracy or completeness of this document, and nothing contained herein is, or shall be relied upon, as
a promise or representation, whether as to the past or the future.
Dimensions and quantities of this preliminary foundation design are subject to local soil conditions, laws
and regulations and depending on simulation and calculations tools and methods used by an
experienced and accredited civil engineer.
This preliminary design of a gravity foundation is not suitable for execution of any foundation
construction activities.
This document contains proprietary and confidential information, which is provided on a commercial in
confidence basis. It may not be reproduced or provided in any manner to any third party without the
written consent of Nordex.
N100/3300 R75 MT5 IEC1a - South Africa
(c) Nordex Energy GmbH
2/6
Preliminary Foundation Design
N100/3300 R75 IEC1a (NCV/CCV)
1. General turbine information
pitch regulated wind turbine with a rotor diameter of approx.
The Nordex N100/3300 ist a
7854 m²) and a nominal power of
3300 kW.
100 m (swept area:
75 m or less,
The turbine will be installed on modular tubular steel tower with a hub height of
depending on the foundation top level.
The turbine is certified according to IEC 61400-1, ed. 3 for wind class:
IEC 1a
2. Standards and regulations
For the preliminary design of the gravity foundation the following standards and regulations have
been used:
- EN 1992-1-1: 2011-01 -Eurocode 2: Design of concrete structures - Part 1-1:
General rules and rules for buildings; German version EN 1992-1-1: 2004 + AC: 2010.
- DIN EN 1997-1: 2004 + AC: 2009 - Eurocode 7: Geotechnical design - Part 1:
General rules, German version.
- IEC 61400-1: 2005 (ed. 3): Wind turbines - Part 1: Design requirements.
- GL IV-1: 2010 - Germanischer Lloyd: Guideline for the certification of wind turbines.
3. Assumptions
For the preliminary design of the gravity foundation the following assumptions have been made:
- foundation loads as specified in
Load document: K0822_040344_IN_R01
for Normal Climate and Cold Climate Versions (NCV and CCV)
- groundwater level above foundation sole
0,00 m
- no tension under operational loads (" No ground gap
")
- the soil above the foundation is required for static reasons and may not be removed
- characteristic soil weight of γsoil,k =
- characteristic weight of γconcrete,k =
18,0 kN/m³
25 kN/m²
- maximum soil resistance (compression) σsoil,k =
- minimum static E-modulus Estat ≥
20000 MN/m²
- minimum dynamic E-modulus Edyn ≥
- static rotating spring rate kφ =
- dynamic rotating spring rate kφ =
N100/3300 R75 MT5 IEC1a - South Africa
1000 kN/m²
and soil contraction v ≤
40000 MN/m²
and soil contraction v ≤
0,25
0,25
22500 MNm/rad
90000
MNm/rad
(c) Nordex Energy GmbH
3/6
Preliminary Foundation Design
- partial safety factors on loads based on IEC 61400-1 regulations and EN 1992-1-1:
• γ= 1,35 for wind loads (bending moment, horizontal loads)
• γ= 1,00 for dead loads (unfavourable)
• γ= 0,90 for dead loads (favourable)
- material safety factors in accordance with EN 1992-1-1:
• γ= 1,15 for reinforcing steel
• γ= 1,50 for concrete
- Checks safety factors in accordance with EN 1997-1:2004 + AC:2009
• γ= 1,50 for over-turning
• γ= 1,10 for Slipping
• γ= 1,40 for Ground Break
- maximum foundation slope (constructability):
12 grad
60 grad
- for excavation an angle of slope:
4. Preliminary design
Material
- lean concrete C12/15 (fck,cyl =
12 N/mm²)
- foundation concrete C35/45 (fck,cyl =
35 N/mm²)
- foundation concrete C50/60 (fck,cyl =
50 N/mm²)
- minimum grout resistance fcd,cyl = 34,84 N/mm²
- reinforcing steel
BSt 500 (fyk = 500 N/mm²)
- Anchor bolt M42 - 10.9 (n = 160 pieces)
N100/3300 R75 MT5 IEC1a - South Africa
(c) Nordex Energy GmbH
4/6
Preliminary Foundation Design
N100/3300 R75 IEC1a (NCV/CCV)
Dimensions
- For the preliminary design a circular foundation was chosen.
l1
[m]
l2
[m]
l3
[m]
hvu
[m]
h1
[m]
h2
[m]
h3
[m]
6,00
2,50
8,50
1,30
1,00
0,45
0,10
hvo
[m]
hs
[m]
h
[m]
Rt
[m]
Dsockel
[m]
Dplate
[m]
hgrout
[cm]
2,30
0,55
2,85
2,00
5,00
17,00
5,00
N100/3300 R75 MT5 IEC1a - South Africa
(c) Nordex Energy GmbH
5/6
Preliminary Foundation Design
N100/3300 R75 IEC1a (NCV/CCV)
Soil pressures
- Maximum design pressure (edge), NCV & CCV:
309
kN/m²
- Mean design pressure, NCV & CCV:
221
kN/m²
5. Quantities
Based on the preliminary design the following quantities have to be considered
Lean concrete C12/15 , 15 cm thick layer
approx.
Concrete C35/45 for the foundation
approx.
Concrete C50/60 for the foundation socket below the
approx.
23 m³
400 m³
10 m³
approx.
49.240 kg
Excavated soil for the foundation
approx.
Backfilling
approx.
582 m³
448 m³
load spreading plate
Reinforcement steel BSt 500
(based on a reinforcement rate of ≈ 120 kg/m³)
N100/3300 R75 MT5 IEC1a - South Africa
(c) Nordex Energy GmbH
6/6
Overview drawing
Nordex N100/2500, Hub height 75 m
This document is a translation from German. In case of doubt, the German text shall prevail.
Document published in electronic form. Signed original at Central Engineering/ENS.
 Nordex Energy GmbH, Langenhorner Chaussee 600, 22419 Hamburg, Germany
All rights reserved. Observe protection notice ISO 16016.
K0801_035896_EN
Revision 00, 2011-08-29
1/3
3,5°
. + 3 m (LM48.8)
3,5°
. + 2 m (NR50)
,
A = 7.823
m
2
99,.8 m
. m
73,01
75 m
124,9
. m
3,96
. m
.
+ 1,10
.
+ 1,10
+ 0,00
.
+ 0,00
.
101.,
1
100., m (LM4
9m
(NR5 8.8)
0)
External transformer
Nordex N100/2500
Hub height: 75 m
Name:
Date:
Scale:
Format:
K0801_035896_EN_R00
29.08.2011
2011-08-29
1 : 500
DIN A2
Page 2
3,5°
. + 3 m (LM48.8)
3,5°
. + 2 m (NR50)
,
A = 7.823
m
2
99,.8 m
. m
73,01
75 m
124,9
. m
3,96
. m
.
+ 1,10
.
+ 1,10
+ 0,00
.
+ 0,00
.
101.,
1
100., m (LM4
9m
(NR5 8.8)
0)
External transformer
Transformer inside the tower
Nordex N100/2500
Hub height: 75 m
Name:
Date:
Scale:
Format:
K0801_035896_EN_R00
29.08.2011
2011-08-29
1 : 500
DIN A2
Page 2
3
Sales document
Wind turbine class K08 delta
Type: N100/3300
Technical description
K0801_041605_EN
Revision 01 / 2013-01-18
- Translation of the original sales document This document is a translation from German. In case of doubt, the German text shall prevail.
Document is published in electronic form.
Signed original at Nordex Energy GmbH, Department Central Engineering.
2013 by Nordex Energy GmbH
Technical modifications
This document was created with utmost care, taking into account the currently applicable
standards.
However, due to continuous development, the figures, functional steps and technical data
are subject to change without prior notice.
Copyright
Copyright 2013 by Nordex Energy GmbH.
This document including its presentation and content is the intellectual property of Nordex
Energy GmbH.
Any disclosure, duplication or translation of this document or parts thereof in printed,
handwritten or electronic form without the explicit approval of Nordex Energy GmbH is
explicitly prohibited.
All rights reserved.
Contact details
For questions relating to this documentation please contact:
Nordex Energy GmbH
Langenhorner Chaussee 600
22419 Hamburg
Germany
http://www.nordex-online.com
[email protected]
2013 by Nordex Energy GmbH
Table of Contents
Revision 01 / 2013-01-18
1.
Set-up................................................................................................................... 4
1.1
Tower .................................................................................................................... 4
1.2
Rotor ..................................................................................................................... 6
1.3
Nacelle .................................................................................................................. 6
1.4
Auxiliary systems .................................................................................................. 8
2.
Functional principle .......................................................................................... 10
3.
Technical data ................................................................................................... 11
4.
Revision index................................................................................................... 15
K0801_041605_EN
Page 3 of 15
Revision 01 / 2013-01-18
1.
Sales document
Set-up
The Nordex N100/3300 wind turbine is a speed-variable wind turbine with a rotor
diameter of 99.8 m and a nominal power of 3300 kW. This wind turbine is
designed for 50 Hz or 60 Hz. The wind turbine is designed for class 1a in
accordance with IEC 61400-1.
The wind turbine Nordex N100/3300 is made up of the following main
components:
● Rotor, consisting of rotor hub, three rotor blades and the pitch system
● Nacelle with drive train, generator and yaw system
● Tubular tower with foundation
● Medium-voltage transformer (MV transformer) and medium-voltage
switchgear (MV switchgear)
1.1
Tower
The Nordex N100/3300 is erected on tubular steel towers for different rotor hub
heights.
The tubular steel tower is a cylindrical tower. The top section is conical.
Depending on the hub height the tower is composed of three or five tower
sections.
Corrosion protection of the tubular steel tower is ensured by a tower surface
coating system according to ISO 12944.
A service lift, the vertical ladder with fall protection system as well as resting and
working platforms inside the tower allow for a weather-protected ascent to the
nacelle.
The foundation depends on the ground conditions at the intended site. An
anchor cage is imbedded in the foundation for anchoring the tower. Tower and
anchor cage are screwed together.
In the standard version, the tower base only accommodates the switch cabinet.
The switch cabinet contains important components of the electronic controls,
turbine PC, frequency converter, main switch, fuses and outputs to the
transformer and to the generator.
The frequency converter is equipped with a water cooling system. The water
heated in the frequency converter is cooled in a water/air heat exchanger. It is
located externally close to the tower door.
The MV transformer and MV switchgear are located in a separate transformer
substation near the wind turbine.
Page 4 of 15
K0801_041605_EN
Tower
Sales document
Revision 01 / 2013-01-18
Fig. 1
Sectional view of the tower base, standard version
1 Soil backfill
2 Tower anchoring
3 Stairs
4 Tower door
5 Ventilation/cooling
6 Power cables
7 2nd Tower platform
8 Switch cabinet
9 1st Tower platform
10 Transformer substation
As an option, the MV transformer and MV switchgear can also be installed in the
tower base. In this case, the components are arranged in the tower base on
three different levels:
● The MV transformer on the foundation
● The MV switchgear on the 1st tower platform
● The switch cabinet with frequency converter on the 2nd tower platform
In the case of a separate transformer substation, the MV transformer is usually
designed as an oil transformer. If the transformer is installed inside the tower, a
dry-type transformer is used.
Tower
K0801_041605_EN
Page 5 of 15
Revision 01 / 2013-01-18
1.2
Sales document
Rotor
The rotor consists of the rotor hub with three pitch bearings and three pitch
drives for blade adjustment as well as three rotor blades.
The rotor hub has a modular design. The base frame of the rotor hub is made
up of a stiff cast structure Onto this element, pitch bearing and rotor blade are
mounted. The rotor hub is covered with the spinner which enables the direct
access from the nacelle into the rotor hub.
The rotor blades are made of high-quality glass-reinforced plastics. Each rotor
blade is equipped with a highly effective lightning protection system.
In accordance with the guidelines IEC TS 61400-23 and GL IV-1 (2400) the rotor
blade is statically and dynamically tested with loads that were even beyond
standard design requirements.
The pitch system serves to adjust the pitch angle of the rotor blades set by the
control system. For each individual rotor blade, the pitch system comprises an
electromagnetic drive with 3-phase motor, planetary gear and drive pinion, as
well as a control unit with frequency converter and emergency power supply.
Power supply and signal transfer are realized through a slip ring assembly
located in the nacelle.
1.3
Nacelle
The nacelle contains essential mechanical and electronic components of the
wind turbine. The nacelle is mounted on the tower in rotating bearings.
The rotor shaft is mounted on the rotor bearing in the nacelle. In the rotor
bearing a mechanical rotor lock is integrated used to securely lock the rotor.
The gearbox increases the rotor speed until it reaches the speed required for
the generator.
The bearings and gearings are continuously lubricated with cooled oil. A 2-stage
pump enables the oil circulation. A combined filter element with integrated
coarse and fine filter removes solids. The control system monitors the level of
contamination of the filter elements (differential pressure measurement).
Optionally, an additional offline filtration can be installed (super fine-mesh filter
5 µm).
The gear oil used for lubrication also serves as a gearbox cooling. The
temperatures of the gearbox bearings and the oil are continually monitored.
When the optimum operating temperature is not reached yet, a thermal bypass
shorts the circuit and conducts the gear oil back to the gearbox. If the optimum
working temperature of the gear oil is exceeded it is cooled down.
The gearbox cooling is achieved with an oil/water cooler with stepped cooling
capacity. The cooler is installed directly at the gearbox. The heated cooling water
is recooled together with the cooling water of the generator in a passive cooler
on the roof of the nacelle.
Page 6 of 15
K0801_041605_EN
Rotor
Sales document
Revision 01 / 2013-01-18
1
2
3
4
5
6
7
15
14
13
12
11
10
9
8
Fig. 2
Nacelle layout drawing
1 Heat exchanger
2 Switch cabinet 2
3 Switch cabinet 1
4 Hydraulic unit
5 Gearbox
6 Rotor shaft
7 Rotor bearing
8 Yaw drive
9 Gear oil cooler
10 Rotor brake
11 Coupling
12 Generator
13 Cooling water pump
14 Hatch for on-board crane
15 Switch cabinet 3
The generator is a 6-pole double-fed asynchronous machine. An air/water heat
exchanger is mounted on the generator. The cooling water is recooled together
with the cooling water of the gearbox heat exchanger in a passive cooler on the
cabin roof.
Nacelle
K0801_041605_EN
Page 7 of 15
Revision 01 / 2013-01-18
Sales document
The mechanical rotor brake supports the aerodynamic braking effect of the
rotor blades as soon as the speed falls below a defined value and finally stops
the rotor. The aerodynamic braking effect of the rotor is achieved by adjusting
the rotor blades perpendicular towards the rotation direction. The rotor brake
consists of a brake caliper which acts on the brake disk mounted behind the
gearbox.
The yaw drives optimally rotate the nacelle into the wind. The four yaw drives
are located on the machine frame in the nacelle. A yaw drive consists of an
electric motor, multi-stage planetary gear and drive pinion. The drive pinions
mesh with the external teeth of the yaw bearing.
If positioned properly the nacelle is locked by means of a electric brake system.
It consists of several brake calipers which are fastened to the machine frame and
act on a brake disk. In addition, the electric motors of the yaw drives are
equipped with an electrically actuated holding brake.
2
3
1
4
Fig. 3
Components of the yaw system
1
2
3
4
Machine frame
Yaw drives in mesh with yaw bearing teeth
Yaw bearing
Brake caliper
The hydraulic unit provides the oil pressure for the operation of the rotor brake
and the yaw brakes.
1.4
Auxiliary systems
An automatic lubrication unit is provided for each rotor bearing, generator
bearing, pitch gearings, pitch races and yaw gearing.
The switch cabinets in the rotor hub, in the nacelle and in the tower base of the
wind turbine are equipped with air conditioning units.
Page 8 of 15
K0801_041605_EN
Auxiliary systems
Sales document
Revision 01 / 2013-01-18
Gearbox, generator and hydraulic unit are equipped with heaters.
A chain hoist is installed in the nacelle which is used for lifting tools,
components and other work materials from the ground into the nacelle. A
second, movable overhead crane is used for carrying the materials within the
nacelle.
Auxiliary systems
K0801_041605_EN
Page 9 of 15
Revision 01 / 2013-01-18
2.
Sales document
Functional principle
The turbine operates automatically. A programmable logic controller (PLC)
continuously monitors the operating parameters using various sensors,
compares the actual values with the corresponding setpoints and issues the
required control signals to the WT components. The operating parameters are
defined by Nordex and adapted to the individual site.
When there is no wind the WT remains in idle mode. Only various auxiliary
systems, such as heating and gear lubrication, and the PLC, which monitors the
data from the wind measuring system, are operational. All other systems are
switched off and do not use any power. The rotor idles.
When the cut-in wind speed is reached, the wind turbine changes to the mode
'Ready for operation'. Now all systems are tested, the nacelle aligns to the wind
and the rotor blades turn into the wind. When a certain speed is reached, the
generator is connected to the grid and the WT produces electricity.
At low wind speeds the WT operates in part-load operation. In the course of this
the rotor blades remain fully turned into the wind (pitch angle 0°). The power
produced by the WT depends on the wind speed.
When the nominal wind speed is reached, the WT switches over to the nominal
load range. If the wind speed continues to increase, the speed control changes
the rotor blade angle so that the rotor speed and thus the power output of the
WT remain constant.
The yaw system ensures that the nacelle is always optimally aligned to the wind.
To this end, two separate wind measuring systems located at the height of the
hub measure the wind direction. Only one wind measuring system is required for
control system, while the second monitors the first and takes over in case the
first system fails. If the measured wind direction varies too greatly from the
alignment of the nacelle, the nacelle is yawed into the wind.
The conversion of the wind energy absorbed from the rotor to electrical energy
is achieved using a double-fed asynchronous generator with slip ring rotor. Its
stator is directly and its rotor via a specially controlled frequency converter
connected to the MV transformer. This offers a significant advantage enabling
the generator to be operated in a defined speed range near its synchronous
speed.
If certain parameters concerning turbine safety are exceeded, the WT will cut out
immediately, e.g. if the cut-out wind speed is exceeded. Depending on the cause
of the cut-out, various braking programs are triggered. In the case of external
causes, such as excessive wind speeds or grid failure, the rotor is softly braked
by means of rotor blade adjustment.
Page 10 of 15
K0801_041605_EN
Auxiliary systems
Sales document
3.
Revision 01 / 2013-01-18
Technical data
Climatic design data of the standard version
Standard -20 °C…+50 °C
CCV -40 °C…+50 °C
HCV -20 °C…+50 °C
Design temperature
Operating temperature range
-20 °C… +40 °C
Operating temperature range CCV
-30 °C … +40 °C
Operating temperature range HCV
-20 °C … +45 °C
Standard -20 °C, restart at .-18 °C
CCV -30 °C, restart at -28 °C
HCV -20 °C, restart at .-18 °C
Stop
Max. height above MSL
2000 m*
Certificate
According to IEC 61400-1
* At installation altitudes above 1000 m, the nominal power can be achieved up
to the defined temperature ranges.
Design
3-blade rotor with horizontal axis
Up-wind turbine
Type
Power control
Active single blade adjustment
Nominal power
3300 kW
Nominal power starting at wind speeds of
(at air density of 1.225 kg/m3)
Approx. 14 m/s
Operating speed range of the rotor
9.03... 16.1 rpm
Nominal speed
14.3 rpm
Cut-in wind speed
Approx. 3 m/s
Cut-out wind speed
25 m/s
Cut-back-in wind speed
22 m/s
Calculated service life
20 years
Towers
Hub height
75 m
100 m
Name
R75
R100
DIBt 3/IEC 1a
DIBt 3/IEC 1a
3
5
Wind class
Number of tower sections
Auxiliary systems
K0801_041605_EN
Page 11 of 15
Revision 01 / 2013-01-18
Sales document
Rotor
Rotor diameter
99.8 m
7823 m2
Swept area
422 W/m2
Nominal power/area
Rotor shaft inclination angle
5°
Blade cone angle
3.5°
Rotor blade
Material
Glass-reinforced plastics
Total length
48.7 m
Total weight per blade
Approx. 11.15 t
Rotor shaft/rotor bearing
Type
Forged hollow shaft
Material
42CrMo4 or 34CrNiMo6
Bearing type
Spherical roller bearing
Lubrication
Continuous and automatic with lubricating
grease
Rotor bearing housing material
EN-GJS-400-18U-LT
Gearbox
Type
Multi-stage planetary gear + spur gear
Gear ratio
50 Hz: i=81 ± 1%
60 Hz: i=97 ± 1%
Lubrication
Forced-feed lubrication
Oil type
VG 320
Max. oil temperature
75 °C
Oil change
Change, if required
Electrical system
Nominal power PnG
3300 kW
Nominal voltage
3 x AC 660 V ± 10%
Nominal current InG at SnG
Page 12 of 15
3564 A
K0801_041605_EN
Auxiliary systems
Sales document
Revision 01 / 2013-01-18
Electrical system
Nominal apparent power SnG at PnG
Power factor at PnG
3667 kVA
1.00 as default setting
0.9 underexcited (inductive) up to
0.9 overexcited (capacitive) possible
Frequency
50 or 60 Hz
NOTE
The nominal power is subject to system-specific tolerances. During nominal
power, they are ±100 kW. Practice has shown that negative deviations occur
rarely and in most cases are <25 kW. For the precise compliance with external
power specifications the nominal power of the single wind turbine may be
parameterized accordingly. Alternatively, the wind farm can be parameterized
accordingly using the Wind Farm Portal®.
Generator
Degree of protection
IP 54 (slip ring box IP 23)
Nominal power
3400 kW
Nominal voltage
660 V
Frequency
50 or 60 Hz
50 Hz: 700 … 1300 rpm
60 Hz: 840 … 1560 rpm
Speed range
Poles
6
Weight
Approx. 10.6 t
Gearbox cooling and filtration
Type
1. Cooling circuit: Oil circuit with oil/water
heat exchanger and thermal bypass
2. Cooling circuit: Water/air together with
generator cooling
Coarse filter 50 µm
Fine-mesh filter 10 µm
Filter
Offline filter (optional)
5 µm
Generator cooling
Type
Water circuit with water/air heat exchanger
50 Hz: 1.3 kW
60 Hz: 1.1 kW
Cooling water pump
Auxiliary systems
K0801_041605_EN
Page 13 of 15
Revision 01 / 2013-01-18
Sales document
Generator cooling
Flow rate
Approx. 70 l/min
Coolant
Water/glycol-based coolant
Converter cooling
Type
Water circuit with water/air heat exchanger
and thermal bypass
Coolant
Water/glycol-based coolant
Pitch System
Pitch bearing
Double-row four-point contact bearing
Lubrication of the gearing
Automatic lubrication unit with grease
Drive
3-phase motor incl. spring-actuated brake
and multi-stage planetary gear
Emergency power supply
Lead-acid batteries
Hydraulic system
Hydraulic oil
VG 32
Oil quantity
Approx. 20 l
Thermal protection
Integrated PT100
Yaw drive
Motor
Asynchronous motor
Gearbox
4-stage planetary gear
Number of drives
4
Lubrication
Oil, ISO VG 150
Yaw speed
Approx. 0.5 °/s
Page 14 of 15
K0801_041605_EN
Auxiliary systems
Sales document
4.
Rev.
01
Revision 01 / 2013-01-18
Revision index
Date
Modification
2013-01-18 New
K0801_041605_EN
AST
Author
7592
R. Simon
Page 15 of 15
Nordex Energy GmbH
Langenhorner Chaussee 600
22419 Hamburg
Germany
http://www.nordex-online.com
[email protected]
2013 by Nordex Energy GmbH
Übersichtszeichnung
Nordex N100/3300, Nabenhöhe 75 m
Stahlrohrturm
 Nordex Energy GmbH, Langenhorner Chaussee 600, 22419 Hamburg
Alle Rechte vorbehalten. Schutzvermerk ISO 16016 beachten.
K0801_041625_IN
Revision 02, 20.02.2013
1/2
3,5° + 2m
4,60 m
A=7.823m²
99,8 m
75,00
124,90
3,91
73,10
13,28 m
Diese Darstellung ist nicht maßstabsgerecht
This image is not according scale
Maßstab/scale: 10 m
Format: A3
Blatt/sheet: 1/4
+1,10
Dokumentennummer/ document number:
K0801_041625_IN_R02
Datum/ Date: 20.02.2013
Nordex N 100/3300
Variante Trafo im Turm/ variant internal
transformer
Nabenhöhe/ Hub heigth: 75 m
100,9 m
Format: A3
Blatt/sheet: 2/4
Dokumentennummer/ document number:
K0801_041625_IN_R02
Datum/ Date: 20.02.2013
Nordex N 100/3300
Variante Trafo im Turm/ variant internal
transformer
Nabenhöhe/ Hub heigth: 75 m
3,5° + 2m
4,60 m
A=7.823m²
99,8 m
75,00
124,90
3,91
73,10
13,28 m
Diese Darstellung ist nicht maßstabsgerecht
This image is not according scale
Maßstab/scale: 10 m
Format: A3
Blatt/sheet: 3/4
+1,10
Dokumentennummer/ document number:
K0801_041625_IN_R02
Datum/ Date: 20.02.2013
Nordex N 100/3300
Variante Trafo außerhalb Turm/ variant
external transformer
Nabenhöhe/ Hub heigth: 75 m
m
101,1100,9
m (LM48,8)
100,9 m (NR50)
Format: A3
Blatt/sheet: 4/4
Dokumentennummer/ document number:
K0801_041625_IN_R02
Datum/ Date: 20.02.2013
Nordex N 100/3300
Variante Trafo außerhalb Turm/ variant
external transformer
Nabenhöhe/ Hub heigth: 75 m
Lastspezifikation / Load Specification
Fundament / Foundation
N100/3300 R75 IEC1a / DIBt3
K0822_040344_IN
Rev. 02
Datum / Date : 12.12.2012
Lastspezifikation / Load Specification
Fundament / Foundation
N100/3300 R75 IEC1a/DIBt3
Rotorblatt / Rotor blades: NR50 ; LM48.8
Klimatische Bedingungen / Climate conditions : NCV; CCV
Dokumentnummer / Document number
K0822_040344_IN
Revision / Revision
Ersteller / Created :
02
A. Schröder/SDT
Datum / Date
12.12.2012
Verantwortliche Abteilung /
Department responsible
Prüfer / Checked :
CE/SDT
R. Laudien/SDT
Klassifikation / Classification
Nordex Intern (IP)
Status / Status
Freigabe / Released :
Final
H.Muuß/SDT
AST
7588
Ersatz für Revision /
Replaces Revision
01
Dokument wird elektronisch verteilt. Original mit Unterschriften bei Central Engineering/PQP
Document published in electronic form. Original at Central Engineering/PQP.
(c) Nordex Energy GmbH, Langenhorner Chaussee 600, D-22419 Hamburg
All rights reserved. Observe protection notice ISO 16016.
Seite /Page : 1/6
Lastspezifikation / Load Specification
Fundament / Foundation
N100/3300 R75 IEC1a / DIBt3
K0822_040344_IN
Rev. 02
Datum / Date : 12.12.2012
ÄNDERUNGSINDEX / REVISION INDEX
Modifikation (Sektion ) /
Modification (Section)
Änderung /
Revision
Datum /
Date
Bearbeiter /
Author
02
12.12.2012
A. Schröder
Angabe der Turmmasse ohne Einbauten,
Mittellasten entfernt
7588
01
10.10.2012
A. Schröder
Extremlasten und technische Basisdaten
angepasst
7588
00
18.09.2012
A. Schröder Erstellt / Created
AST
7588
INHALTSVERZEICHNIS /
TABLE OF CONTENT
ÄNDERUNSINDEX / REVISION INDEX
2
INHALTSVERZEICHNIS / TABLE OF CONTENT
2
1
ALLGEMEINSES / GENERAL
3
1.1
Gültigkeitsbereich / Scope
3
1.2
Mitgeltende Dokumente / References
3
2
LASTEN / LOADS
4
2.1
Technische Basisdaten / Parameters
4
2.1.1 Bedingungen für Erdbeben / Earthquake conditions
4
2.1.2 Klimatische Bedingungen / Climate conditions
4
2.2 Zusammenstellung der Lasten / Summary of Loads
5
2.2.1 Extremlasten NCV & CCV / Extreme Loads NCV & CCV
5
2.2.2 Betriebslasten / Fatigue Loads
6
Seite /Page : 2/6
Lastspezifikation / Load Specification
Fundament / Foundation
N100/3300 R75 IEC1a / DIBt3
K0822_040344_IN
Rev. 02
Datum / Date : 12.12.2012
1. ALLGEMEINES / GENERAL
1.1 Gültigkeitsbereich / Scope
Diese Lastspezifikation stellt die Basisinformation für die Bemessung von Fundamenten für folgende
Windenergieanlage der Firma Nordex dar. Darin sind die Technischen Basisdaten sowie die
Bemessungslasten für die Klimatischen Bedingungen (NCV und CCV) enthalten. Die Spezifikation
F302_0148 ist grundsätzlich einzuhalten.
This specification serves as input information for the design of foundations for the following Nordex wind
turbine. Therefore it defines its main parameters and the design loads for the two different climate
conditions NCV and CCV. The specification F302_148 is strictly to follow.
Typ / Type : N100/3300
Nabenhöhe / Hub height : 75m
Turm / Tower : R75
Windklasse / Wind class : IEC1a/DIBt3
Rotorblätter / Rotor blades : NR50 ; LM48.8
1.2 Referenzen / References
Dokumentennr., Revision, Ausgabe /
Document Number, Rev. / Edition
NALL22_004598_EN
F302_148_EN_01
NALL01_011953_DE_00
K0817_043715_DE_01
K0823_043417_EN_01
K0801_043433_EN_01
K0801_043434_EN_00
K0801_043436_EN_01
K0801_043437_EN_01
K0801_043438_EN_00
K0802_043782_DE_00
Bezeichnung /
Description
Nordex Dokumente / Nordex Specifications
Technical Specification Design Site Specific Foundation
Externe Bedingungen und Anforderungen an NORDEXWindenergieanlagen
Turmspezifikation - Rohrturm N100 R75MT IEC1A/DIBt3A
Loads Report N100 LM48.8 R75MT 3.3MW 50/60Hz IEC1A
(Ed.3) NCV
Loads Report N100 LM48.8 R75MT 3.3MW 50/60Hz IEC1A
(Ed.3) CCV (Idling/CCV-B)
Loads Report N100 LM48.8 R75MT 3.3MW 50Hz DIBt3A NCV
Loads Report N100 NR50 R75MT 3.3MW 50/60Hz IEC1A (Ed.3)
NCV
Loads Report N100 NR50 R75MT 3.3MW 50/60Hz IEC1A (Ed.3)
CCV (Idling/CCV-B)
Loads Report N100 NR50 R75MT 3.3MW 50Hz DIBt3A NCV
Bemessung Stahlrohrturm - N100/3300 R75 TiT IEC1a/DIBt3
Normen / Standards
GL IV-1:Edition 2010
Guideline for the certification of wind turbines. Hamburg :
Germanischer Lloyd WindEnergie, 2010
EN 1998-1:2010
Eurocode 8 - Design of structures for earthquake resistance
Part 1: General rules, Seismic action and rules for buildings
IEC 61400-1 (Ed.3)
Windturbine generator systems. Part 1: Safety requirements
DIBt RiLi 2004-03
DIBt Richtlinie für Windenergieanlagen - Einwirkungen und
Standsicherheitsnachweise für Turm und Gründung
Seite /Page : 3/6
Lastspezifikation / Load Specification
Fundament / Foundation
N100/3300 R75 IEC1a / DIBt3
K0822_040344_IN
Rev. 02
Datum / Date : 12.12.2012
2 LASTEN / LOADS
2.1 Technische Basisdaten / Parameters
f0 [Hz] =
0,330
1. Biegeeigenfrequenz / First eigenfreqency in bending
kϕ,dyn [MNm/rad] =
90000
kϕ,stat [MNm/rad] =
22500
berücksichtigte Bodendrehfeder /
respective rotating spring rate
Schiefstellung Turm [mm/m] /
Inclination tower [mm/m] =
11,1
hTB [m] =
1.1
mtower [t] =
150,1
mnacelle [t] =
175,9
Höhe Unterkante Turmfuß über Geländeoberkante /
Position of tower bottom respective to top ground surface
Turmmasse ohne Einbauten / Mass of tower excl. Tower interiors
Gondelmasse (inkl. Rotorblätter) /
Total mass of nacelle incl. blades
2.1.1 Bedingungen für Erdbeben / Earthquake conditions
Norm / Standard : EN 1998-1:2010
Bodenklasse / Soil class : A, B, C, D, E
a [m/s²] =
0.3*g
(DIBt) Bodenbeschleunigung / peak ground acceleration (PGA)
a [m/s²] =
0.3*g
(IEC)
Bodenbeschleunigung / peak ground acceleration (PGA)
2.1.2 Klimatische Bedingungen / Climate conditions
NCV :
Normal climate version (englisch). "Normal climate" bedeutet volle Produktion bis -10°C und
Stillstand bzw. Trudeln zwischen -10°C und -20°C.
Normal climate version. Normal climate means full production down to -10°C and standstill or
idling between -10°C and -20°C.
CCV :
Cold climate version (englisch). "Cold climate" bedeutet volle Produktion bis -10°C, reduzierte
Produktion zwischen -10°C und -30°C und Stillstand bzw. Trudeln zw. -30°C und -40°C.
Cold climate version. Cold climate means full production down to -10°C, reduced power
production between -10°C and -30°C and standstill or idling between -30°C and -40°C.
Seite /Page : 4/6
Lastspezifikation / Load Specification
Fundament / Foundation
N100/3300 R75 IEC1a / DIBt3
K0822_040344_IN
Rev. 02
Datum / Date : 12.12.2012
2.2 Zusammenfassung der Lasten / Summary of Loads
2.2.1 Extremlasten NCV & CCV / Extreme Loads NCV & CCV
System :TB
Definition:
Turmfuß / Tower Bottom
Extremlasten (absolute Maxima) inkl. Erdbebenlastfälle inkl. Sicherheit /
Extreme Loads (absolute maxima) incl. earthquake + synchrone components (including safety-factors)
LC
8.1
2.1
6.1
6.1
LC-Def.
FXTB
MXTB
kN
kNm
08010000_DIBt_ZY_D_17_(DIBt3_50Hz_NCV)_(NR50)
5294
-60
CCV_B_02010204_ZZ_C_24_07.ave_(IEC1a_60Hz_CCV_B)_(LM48)
4621
-7765
CCV_06010000_ZY_C_50_01.ave_(IEC1a_50Hz_NCV_CCV)_(NR50)
4633
-3117
CCV_06010000_ZY_C_50_01.ave_(IEC1a_50Hz_NCV_CCV)_(NR50)
4631
-3109
FYZTB
kN
33
268
1294
1284
MYZTB
kNm
1712
21872
91573
91681
∆Mres
[kNm]
2596 *
2596 *
2596 *
2596 *
Mres
[kNm]
4308
24468
94169
94277
γf
1,60
1,35
1,35
1,35
Extremlasten (absolute Maxima) inkl. Erdbebenlastfälle exkl. Sicherheit /
Extreme Loads (absolute maxima) incl. earthquake + synchrone components (excl. safety-factors)
LC
5.2
2.1
6.2
6.2
LC-Def.
FXTB
MXTB
kN
kNm
05020000_ZY_A_10_01.ave_(IEC1a_50Hz_NCV_CCV)_(NR50)
4433
33
CCV_B_02010204_ZZ_C_24_07.ave_(IEC1a_60Hz_CCV_B)_(LM48)
3423
-5752
CCV_06020000_ZY_A_50_01.ave_(IEC1a_50Hz_NCV_CCV)_(NR50)
3413
-1184
CCV_06020000_ZY_A_50_01.ave_(IEC1a_50Hz_NCV_CCV)_(NR50)
3407
-1198
FYZTB
kN
458
199
1079
1077
MYZTB
kNm
32555
16202
74350
74460
∆Mres
[kNm]
2596 *
2596 *
2596 *
2596 *
Mres
[kNm]
35151
18798
76946
77056
γf
1,00
1,00
1,00
1,00
Extremlasten (absolute Maxima) exkl. Erdbebenlastfälle inkl. Sicherheit /
Extreme Loads (absolute maxima) excl. earthquake + synchrone components (incl. safety-factors)
LC
LC-Def.
FXTB
MXTB
kN
kNm
08010000_DIBt_ZY_D_17_(NR50_DIBt)
5294
-60
CCV_B_02010204_ZZ_C_24_07.ave_(LM48_IEC_CCV_B_60Hz)
4621
-7765
CCV_06010000_ZY_C_50_01.ave_(NR50_IEC_NCV_CCV_50Hz)
4633
-3117
CCV_06010000_ZY_C_50_01.ave_(NR50_IEC_NCV_CCV_50Hz)
4631
-3109
FYZTB
kN
33
268
1294
1284
MYZTB
kNm
1712
21872
91573
91681
∆Mres
[kNm]
2596 *
2596 *
2596 *
2596 *
Mres
[kNm]
4308
24468
94169
94277
Extremlasten (absolute Maxima) exkl. Erdbebenlastfälle exkl. Sicherheit /
Extreme Loads (absolute maxima) excl. earthquake + synchrone components (excl. safety-factors)
LC
LC-Def.
FXTB
MXTB
FYZTB
MYZTB
∆Mres
kN
kNm
kN
kNm
[kNm]
CCV_07010000_ZY_C_40_01.ave_(NR50_IEC_NCV_CCV_50Hz)
7.1
3743
-2057
280
14782
2596 *
CCV_B_02010204_ZZ_C_24_07.ave_(LM48_IEC_CCV_B_60Hz)
2.1
3423
-5752
199
16202
2596 *
CCV_06020000_ZY_A_50_01.ave_(NR50_IEC_NCV_CCV_50Hz)
6.2
3413
-1184
1079
74350
2596 *
CCV_06020000_ZY_A_50_01.ave_(NR50_IEC_NCV_CCV_50Hz)
6.2
3407
-1198
1077
74460
2596 *
Mres
[kNm]
17378
18798
76946
77056
8.1
2.1
6.1
6.1
γf
1,60
1,35
1,35
1,35
γf
1,00
1,00
1,00
1,00
*) maximaler ∆Mres- Wert aus N100/3300 R75 IEC1a/DIBt3 / max ∆Mres value from N100/3300 R75 IEC1a/DIBt3
DIBt LM48
DIBt NR50
IEC LM48 50Hz
IEC LM48 60Hz
IEC NR50 50Hz
IEC NR50 60Hz
Ständige Lasten (klaffende Fuge) nach DIBtRichtlinie 2004-03 und Korrektur 2006-12
Permanent Loads (gaping joint) acc. to DIBt 2004-03
& corr. 2006-12
FXTB
FZTB
MXTB
MresTB
[kN]
[kN]
[kNm]
[kNm]
3560
460
1800
32000
3580
480
1800
34000
3570
460
2100
34000
3570
460
2100
34000
3590
500
2100
36000
3590
500
2100
36000
Seite /Page : 5/6
Lastspezifikation / Load Specification
Fundament / Foundation
N100/3300 R75 IEC1a / DIBt3
K0822_040344_IN
Rev.02
Datum / Date : 12.12.2012
2.2.2 Betriebslasten Turmfuß / Fatigue Loads Tower bottom
N
Betriebslasten Schädigungsäquivalente ESK /
Fatigue Loads Damage Equivalent Load Spectrum
m
FXTB FYTB
FZTB MXTB
MYTB
Lastspiele
Cycles
1,00E+07
3
1,00E+07
4
1,00E+07
5
1,00E+07
6
1,00E+07
7
1,00E+07
8
1,00E+07
9
1,00E+07
10
1,00E+07
11
1,00E+07
12
gamma-f - FAT
MZTB
kN
kN
kN
kNm
kNm
kNm
182
145
132
128
129
132
137
144
150
156
1,0
271
264
284
314
345
376
405
432
457
480
1,0
374
331
324
328
339
354
371
388
406
423
1,0
5141
4383
4201
4229
4361
4522
4689
4853
5010
5158
1,0
21315
20127
20362
21162
22243
23482
24794
26117
27402
28622
1,0
17838
17766
19559
21836
24163
26389
28472
30405
32198
33860
1,0
Die Rain Flow Counts (RFCs) werden im Excel-Format beigefügt. / The rain flow counts (RFCs) are attached
as Excel-file.
Seite /Page : 6/6

Documents pareils