Influence des procédés de la filière traitement thermique sur les

Transcription

Influence des procédés de la filière traitement thermique sur les
Chapitre 1 : Synthèse bibliographique
Chapitre 1 : Synthèse bibliographique
INTRODUCTION ..................................................................................................................... 7
1 GENERALITES SUR LES DECHETS ET CLASSIFICATION DES DECHETS............ 7
1.1 Modes de classification des déchets............................................................................................ 7
1.2 Flux annuels ................................................................................................................................. 8
1.3 Composition des DMA ................................................................................................................ 9
1.3.1 Composition générale............................................................................................................................. 9
1.3.2 Origine des polluants............................................................................................................................ 10
1.4 Les différents modes de traitement des DMA ......................................................................... 11
1.5 Gestion des déchets ménagers et assimilés .............................................................................. 12
1.5.1 Répartition des modes de traitement des DMA.................................................................................... 12
1.5.2 La gestion des OM de la collecte au traitement ................................................................................... 14
2 LE TRAITEMENT THERMIQUE ..................................................................................... 15
2.1 Les flux concernés par le traitement par incinération ........................................................... 16
2.2 Principes de combustion des déchets ....................................................................................... 16
2.3 Caractéristiques thermiques et physiques des combustibles ................................................. 18
2.4 Organisation et techniques du traitement par incinération................................................... 19
2.5 Principaux types de fours.......................................................................................................... 21
2.5.1 Le four à grille...................................................................................................................................... 21
2.5.2 Le four rotatif ....................................................................................................................................... 22
2.5.3 Le four à lit fluidisé.............................................................................................................................. 23
2.6 Les nouvelles technologies de traitement thermique des déchets municipaux..................... 24
2.7 Les sous-produits de l'incinération .......................................................................................... 25
2.7.1 Les résidus solides............................................................................................................................... 26
2.7.2 Les effluents gazeux............................................................................................................................. 27
2.7.3 Les résidus liquides .............................................................................................................................. 28
2.7.4 Cas des fours à lit fluidisés................................................................................................................... 28
2.8 Répartition des polluants dans les résidus............................................................................... 29
3 LES MACHEFERS D’INCINERATION D’ORDURES MENAGERES (MIOM).......... 30
3.1 Le gisement de mâchefers ......................................................................................................... 30
3.2 Les caractéristiques ................................................................................................................... 32
3.2.1 Les caractéristiques physiques ............................................................................................................. 32
3.2.2 Les caractéristiques chimiques............................................................................................................. 33
3.2.3 Matière organique ................................................................................................................................ 38
3.2.4 Répartition des métaux lourds.............................................................................................................. 39
3.2.5 Comportement à la lixiviation.............................................................................................................. 40
3.2.6 Toxicité des mâchefers......................................................................................................................... 44
3.2.7 Bilan sur les caractéristiques des MIOM ............................................................................................. 45
3.3 Le contexte réglementaire ......................................................................................................... 46
5
Chapitre 1 : Synthèse bibliographique
3.4 Gestion des mâchefers ............................................................................................................... 47
3.4.1 Les Installations de Maturation et d’Elaboration des mâchefers (IME)............................................... 47
3.4.2 Différents types de procédés de traitement .......................................................................................... 48
3.4.3 La maturation ....................................................................................................................................... 49
3.4.4 La valorisation des mâchefers .............................................................................................................. 53
4 CONCLUSION ET OBJECTIFS DE LA THESE ............................................................. 56
6
Chapitre 1 : Synthèse bibliographique
INTRODUCTION
La préservation d’un environnement de qualité passe par une gestion appropriée des déchets,
en limitant d’une part leur production, et en développant d’autre part des modes de
valorisation en équilibre avec le milieu naturel.
Un des principaux modes de traitement et d’élimination des déchets ménagers en France est
l’incinération qui conduit à la formation de scories, appelées mâchefers d’incinération
d’ordures ménagères, et qu’il faut à leur tour éliminer. Ces résidus s’apparentent à une grave
naturelle et plusieurs pays (européens, Japon, ...), se sont penchés ces quinze dernières années,
sur les possibilités de leur utilisation. La technique routière demeure encore aujourd’hui la
principale filière de valorisation des mâchefers, après suivi réglementaire de leur impact
environnemental.
Ce chapitre est consacré, dans un premier temps, à présenter le gisement d’ordures ménagères
ainsi que leurs modes de traitement et d’élimination. Dans une deuxième partie, la filière du
traitement thermique, conduisant à la formation de mâchefers a été détaillée. Enfin, une
troisième partie est consacrée aux propriétés et caractéristiques des mâchefers, ainsi qu’à la
réglementation qui régit leur utilisation. La phase de maturation des mâchefers, principale
étape de traitement avant réutilisation, est également détaillée dans cette partie.
1 GENERALITES SUR LES DECHETS ET CLASSIFICATION DES DECHETS
1.1 Modes de classification des déchets
La loi du 15 juillet 1975 définit le terme déchet comme "tout résidu d'un processus de
production, de transformation ou d'utilisation, toute substance, matériau, produit ou plus
généralement tout bien meuble abandonné, ou que son détenteur destine à l'abandon".
Il est habituel que le premier critère de classement des déchets soit leur origine : ménages,
entreprises, communes, agriculture. Dans un deuxième temps, on distingue généralement
7
Chapitre 1 : Synthèse bibliographique
plusieurs natures de déchets : putrescibles (y compris les boues de stations d'épuration, ou
déchets d'espaces verts), emballages et déchets industriels banals ou spéciaux.
Une autre approche est de regrouper les déchets en fonction de leur mode de collecte. Des
déchets de nature ou d’origine différente, mais collectés de la même manière vont suivre les
mêmes filières de traitement. On catégorise ainsi les Déchets Ménagers et Assimilés (DMA),
c'est à dire tout ce qui est collecté par les communes, soit directement (régie), soit en soustraitance. On y trouve les déchets des ménages et les déchets des commerces, artisans et
petites entreprises collectés de cette façon. N'en font pas partie les déchets des ménages qui
suivent un circuit spécifique (par exemple les piles électriques ou les médicaments qui sont
directement rapportés aux magasins ou aux pharmacies), catégorie qui représente encore de
faibles volumes mais qu'il importe de mentionner pour deux raisons : d'une part il s'agit
souvent aujourd'hui de produits toxiques, et d'autre part, ces filières spécifiques pourraient se
multiplier.
1.2 Flux annuels
(Source : l’environnement en France – IFEN – 2002).
Les quantités de déchets produites en une année sur le territoire français sont réparties de
manière suivante.
• Les déchets municipaux : 47 millions de tonnes (Mt)
Il s’agit des déchets collectés et traités sous la responsabilité des municipalités et leurs
groupements. Ils se décomposent en :
- DMA : 27 Mt dont : Ordures ménagères au sens strict : 22 Mt
Déchets des activités collectés avec les déchets des ménages : 5 Mt
- Déchets encombrants des ménages et déchets verts des ménages : 6 Mt
- Déchets des collectivités : 14 Mt
dont : Boues de station d’épuration : 9 Mt
Déchets de voirie et de marchés : 4 Mt
Déchets verts : 1 Mt
• Les déchets industriels et commerciaux : 98 Mt
Il s’agit des déchets produits par les activités (hors BTP et agriculture). Ils se décomposent
en :
8
Chapitre 1 : Synthèse bibliographique
- Déchets industriels banals collectés : 89 Mt
dont 43 Mt de déchets des industries agro-alimentaires
46 Mt collectés avec les DMA
- Déchets industriels spéciaux : 9 Mt
• Les déchets agricoles : 375 Mt
Ils se décomposent en :
- Déchets des élevages : 275 Mt
- Déchets de cultures : 55 Mt
- Déchets de forêts : 45 Mt.
Ces matières relèvent d'une logique complètement différente de celle des déchets des ménages
ou des entreprises. L'agriculteur ne cherchera pas à les éliminer mais à les valoriser dans
l’enrichissement des sols.
• Les déchets du BTP (déchets de chantier-déconstruction-démolition) : 130 millions Mt
• Les déchets d’activité de soin : 0,15 Mt
La production totale de déchets est de l’ordre de 650 Mt/an. Selon leur nature, ils vont
suivrent diverses filières de gestion et de traitement. Nous nous intéresserons plus
particulièrement aux DMA, gisement le plus hétérogène et relevant de la responsabilité des
municipalités.
1.3 Composition des DMA
Les DMA, comme énoncé précédemment, rassemblent donc les Ordures Ménagères (OM) et
les déchets banals des entreprises, ces deux flux étant destinés à suivre les mêmes modes de
traitement.
1.3.1 Composition générale
Le tableau 1.1 représente la composition moyenne des OM en France et le tableau 1.2 la
composition moyenne des déchets banals des entreprises.
9
Chapitre 1 : Synthèse bibliographique
Nature du déchet
putrescibles
papiers-cartons
verres
plastiques
métaux
autres
Part dans les ordures ménagères (en %)
28,8
25,3
13,1
11,1
4,1
17,6
Tableau 1.1 : Composition en % massique des OM en France (ADEME, 2000)
Nature du déchet
bois
métaux
papiers-cartons
plastiques
verre
caoutchoucs
textiles
autres
Part dans les déchets industriels banals
(en %)
41,6
16,7
14,6
2,6
1,7
0,6
0,6
21,7
Tableau 1.2 : Composition en % massique des déchets banals des entreprises en France
(ADEME , 2000)
La composition des OM a beaucoup évolué depuis 1970. Si la part des papiers-cartons
reste relativement stable, celle du verre a plus que triplé et celle des plastiques, presque
inexistants à l'époque, représente maintenant plus de 11 %. (ADEME (1), 2003). La
généralisation des différentes collectes sélectives a un impact direct sur les déchets ménagers
restants, dit non recyclables, et définis comme déchets gris ou déchets humides. Sur le plan
quantitatif, les collectes de verre d'une part, d'emballages et de journaux/magazine d'autre
part, diminuent le tonnage des déchets gris, respectivement, de 13 % et 21 % (LeymarieMartin et al., 2003).
Par contre, la masse de déchets produite est en constante augmentation et cause actuellement
des problèmes de gestion et de pollution que l'on ne peut plus ignorer.
1.3.2 Origine des polluants
Les ordures ménagères et assimilés sont susceptibles de contenir un certain nombre de
composés toxiques ou nuisibles à l’environnement. Parmi ces polluants, on trouve
essentiellement des composés organiques provenant des déchets putrescibles, le chlore se
trouvant dans certains plastiques, le soufre, et les métaux lourds.
10
Chapitre 1 : Synthèse bibliographique
Rousseaux (1987) a réalisé un bilan concernant l’origine des métaux lourds présents dans les
ordures ménagères. Ceux-ci se retrouvent sous différentes formes dans des produits de
consommation très divers :
- Le plomb se trouve essentiellement dans les ferrailles du fait de la contamination par
les soudures étain-plomb.
- Les caoutchoucs et cuirs jouent un rôle important en ce qui concerne le Zn, Cd, Cr et
Hg.
- Le Cd, Cr et Pb sont utilisés comme additifs dans les plastiques.
- Le papier (notamment l’encre) est une source notable de Hg, Zn et Cu.
- La majorité du Cr est en partie apportée par le composant « verre », ainsi qu’une
partie non négligeable du Pb.
Il faut tout de même noter que depuis cette étude en 1987, la répartition des métaux lourds
dans les DMA a sans doute évolué, notamment en raison de réglementations sur certains
produits, comme les encres par exemple.
1.4 Les différents modes de traitement des DMA
Les différents modes de traitement des DMA se distinguent par la possibilité ou non de
valoriser le déchet. Les filières de valorisation sont les suivantes :
L'incinération avec récupération d'énergie, sous forme de chaleur ou d'électricité : la
combustion est réalisée dans des Unités d'Incinération d'Ordures Ménagères, (UIOM). La plus
petite dimension économiquement raisonnable est de 50 000 t/an de déchets à Pouvoir
Calorifique Moyen (PCI) de 2000 kcal/kg (Prevot, 2000). (Le PCI représente la quantité de
chaleur qui serait dégagée lors de la combustion complète d’un kilo de déchet, la chaleur
latente d’évaporation de l’eau contenue dans ces déchets étant déduite).
-
La fabrication de combustible stockable.
-
Le compostage et la méthanisation : Ce sont des transformations biologiques à
basse température des fractions organiques, aérobie (compostage) ou anaérobie
(méthanisation). Les deux donnent un produit qui peut servir, tel quel ou en
mélange avec d'autres produits, d'amendement organique, de support de végétation
11
Chapitre 1 : Synthèse bibliographique
ou d'engrais. Dans le cas de la méthanisation, il y a production de biogaz qui peut
être lui aussi valorisé énergétiquement.
-
Le recyclage : Le plus souvent, les déchets sont mélangés. Dans ce cas, l'opération
de recyclage demande d'abord un tri qui peut s'opérer soit à la source, c'est-à-dire
par l'habitant lui-même ou l'entreprise, soit sur site, c'est-à-dire dans un centre de
tri, ou chez l'industriel qui utilise le produit recyclé. Le tri à la source n'étant
jamais suffisant, il est toujours complété par un tri sur site.
Il existe encore à l'heure actuelle des systèmes d'élimination des ordures ménagères sans
valorisation, tels que l'incinération sans récupération d'énergie. Depuis 2002, la mise en
décharge n'est possible que pour les déchets "ultimes" c'est-à-dire ceux qui, dans les
conditions économiques et techniques du moment, n'auront pas pu être utilisés comme
matière ou comme source d'énergie.
Le choix d'une filière de traitement est complexe et doit intégrer diverses contraintes
techniques, mais également politiques, sociales ou économiques, et les acteurs (état,
collectivités, industriels, citoyens, …) sont nombreux. Des études scientifiques ont été menées
en vue d'établir des modèles de gestion intégrant la composition des déchets et les coûts
environnementaux et économiques. La mise au point d'indicateurs permettant d'orienter les
déchets vers une valorisation matière ou énergie a également été étudiée (Prevot, 2000 ; Costi
et al., 2004).
1.5 Gestion des déchets ménagers et assimilés
1.5.1 Répartition des modes de traitement des DMA
En 2002, 47 millions de tonnes de déchets entrent dans les installations de traitement des
déchets ménagers et assimilés, dont 22 millions d'ordures ménagères. 19 millions de tonnes
vont être valorisées. Les modes de traitement sont répartis selon les valeurs indiquées sur les
figures 1.1 (DMA) et 1.2 (OM) (ADEME ITOM, 2002 (2)).
12
Chapitre 1 : Synthèse bibliographique
Traitement biologique
Incinération avec récupération d'energie
Centre de stockage
Incinération sans récupération d'energie
Tri matériaux recyclables
27 %
27 %
Nombre
d’unités
4%
33 %
9%
9%
2%
Quantités
(% massique)
52 %
26 %
11 %
Figure 1.1 : Répartition des unités et des quantités de DMA traitées par filière (ADEME, 2002)
Les priorités actuelles de la politique de gestion des déchets municipaux et assimilés sont de
promouvoir la récupération de matière et d'énergie. On assiste donc au développement de la
collecte sélective et des unités de tri de matériaux recyclables issus des ordures ménagères ou
13
Chapitre 1 : Synthèse bibliographique
des déchets banals des entreprises, ainsi qu'à celui du compostage de déchets verts et des
biodéchets des ménages. On constate cependant que, malgré un nombre d’unités élevé dans
ces filières, les capacités de traitement restent faibles.
7%
Traitement
biologique
3%
Incinération sans
récupération
d'energie
Incinération avec
récupération
d'energie
41 %
41 %
Tri matériaux
recyclables
Centre de
stockage
8%
Figure 1.2 : Répartition des quantités d’OM traitées par filière (en % massique) (ADEME 2002)
Le bilan quantitatif du traitement des ordures ménagères diffère de celui dressé pour
l’ensemble des déchets ménagers et assimilés. La valorisation énergétique directe par
incinération est nettement plus importante. La part du recyclage issu du tri ainsi que celle du
compostage sont légèrement inférieures. Mais les tendances globales d’évolution sont les
mêmes, avec une hausse de la valorisation énergétique et une baisse sensible du stockage
pour les DMA et les OM au sens strict.
1.5.2 La gestion des OM de la collecte au traitement
La figure 1.3 présente les différentes étapes de la gestion des DMA (Recy.net, 2003).
14
Chapitre 1 : Synthèse bibliographique
COLLECTE DES DMA
APPORT
VOLONTAIRE
PORTE A PORTE
Déchets verts
CENTRE DE TRANSFERT OU CENTRE DE TRI
TRI MANUEL
TRI MECANIQUE
Boues de
STEP
COMPACTAGE
MISE EN BALLE
ferrailles
mâchefers
VALORISATION
MATIERE
VALORISATION
ENERGETIQUE
mâchefers
refiom
METHANISATION
ENFOUISSEMENT
CSDU 1,2,3
COMPOSATGE
Figure 1.3 : Chaîne de gestion des DMA
La collecte séparative en porte à porte, permet de récupérer une sélection de produits
recyclables, au premier rang desquels les emballages. La collecte séparative par apport
volontaire utilise des colonnes, ou des conteneurs spécifiques sur des espaces publics,
déchetteries, etc.
Le tri manuel est souvent nécessaire, et ce, quel que soit le degré de mécanisation choisi
auparavant. Il permet une certaine flexibilité en cas de variation de la qualité et/ou des flux à
traiter due, par exemple, à la saisonnalité.
2 LE TRAITEMENT THERMIQUE
L’incinération reste donc le mode de traitement le plus développé pour les OM, à part égale
avec le stockage. Actuellement, le parc des usines d’incinération d’ordures ménagères
15
Chapitre 1 : Synthèse bibliographique
(situation au 6 janvier 2003) comporte 123 installations, représentant une capacité de
traitement de 2000 tonnes de déchets/heure.
2.1 Les flux concernés par le traitement par incinération
Si l’incinération reste un des deux modes de traitement privilégiés des ordures ménagères,
d'autres flux de déchets peuvent également être traités simultanément. Il s'agit, soit de déchets
assimilables aux ordures ménagères, soit de déchets ayant des caractéristiques différentes. On
parle alors de co-incinération. Le tableau 1.3 résume l'ensemble de ces possibilités (Wenisch,
1999) :
Nature des flux traités
Provenance possible
ordures ménagères et assimilés, déchets des espaces verts,
déchets de nettoiement, refus de tri, …
encombrants, déchets banals
déchets hospitaliers
déchets d'assainissement (boues)
de la compétence de la commune : service de collectivités,
activité économique administration
hors compétence de la commune : activité économique et
administration
extérieur du territoire de la commune
Tableau 1.3 : Nature et origine des flux traités par incinération
2.2 Principes de combustion des déchets
L'incinération est un processus d'oxydation de la partie combustible d’un déchet, au sein
d’une unité adaptée aux variations de caractéristiques des déchets en contrôlant trois facteurs :
Température de combustion - Temps de séjour – Turbulence (règle des 3T). Le tableau 1.4
résume ces principaux paramètres.
16
Chapitre 1 : Synthèse bibliographique
Température
• En général, de l'ordre de 850 °C à 900 °C. La plupart des équilibres
thermodynamiques de la combustion sont favorisés par la température.
• < 1200 °C : c'est à partir de cette température que certaines substances
minérales se ramollissent et forment des cendres dites collantes.
• > 1200 °C : combustion de certains déchets difficilement auto
combustibles, notamment les polychlorobiphényles, les phénols, etc.
• Calculé pour permettre la combustion complète des déchets. Le temps de
séjour moyen est déterminé par la relation T= V/Q avec Q le débit en
volume de gaz produit par la charge incinérée et V le volume de la chambre
de combustion.
Temps de séjour • Varie de 1/2 heure à 3 heures pour les déchets solides (60 minutes en
moyenne).
• Pour les déchets liquides, fonction de la qualité de la pulvérisation
(quelques secondes).
Turbulence
• Permet de maintenir l'homogénéité du mélange gazeux par un mélange
intime des combustibles et de l'air comburant.
• Permet d'éviter la présence de zones froides qui diminueraient les vitesses
de réaction.
• Elle peut être réalisée :
=> soit directement dans les brûleurs par injection d'effluents, (la viscosité
du produit doit permettre une bonne atomisation et par la suite un mélange
rapide avec l'air comburant soufflé à grande vitesse),
=> soit dans les fours grâce à des aménagements divers (inversion de
parcours des fumées, dispositions judicieuses d'injections d'air et de
produits).
Tableau 1.4 : Paramètres nécessaires à une bonne combustion
Les principes de base de l'incinération sont les suivants :
• Les matières organiques combustibles (matières cellulosiques, plastiques, solvants,
etc.) formées essentiellement des éléments C, H, Cl, N et S subissent une dégradation
thermique qui conduit à la génération de CO2 et d'H2O et en quantités moindres, de
HCl, SOx, et NOx qui se retrouvent dans les effluents gazeux.
• Les matières inorganiques ne sont pas dégradées. Certaines seront à l’état fondu dans
le four. L’essentiel de ces minéraux, sous forme d'oxydes, ou d’autres sels, sera
retrouvé dans les résidus solides (mâchefers ou cendres volantes).
Le processus d’incinération engendre différents phénomènes physico-chimiques (Boscak,
1993) :
• la pyrolyse (en cas de défaut d’oxygène),
• la combustion en milieu solide, liquide, gazeux,
17
Chapitre 1 : Synthèse bibliographique
• le transfert de chaleur conductif, convectif et radiatif,
• le transfert de masse,
• le flux de gaz.
Les réactions de combustion ont lieu entre le déchet et l’oxygène de l’air. En cas de mélange
incomplet des déchets et de l’oxygène, on observe une combustion qui peut être imparfaite. Il
existe des zones où la flamme est réductrice et d’autres où elle est oxydante. Des zones
« froides » peuvent également exister dans le four, pouvant entraîner une combustion
incomplète.
2.3 Caractéristiques thermiques et physiques des combustibles
Le combustible "déchets ménagers" est formé en général de matériaux contenant des dérivés
de la cellulose (putrescibles, papiers-cartons), et de matériaux plastiques. Sa masse volumique
peut être petite à modérée ; de plus, il possède une grande porosité et a souvent un taux
d'humidité élevé. Chimiquement, la cellulose et le bois sont très oxygénés, leur teneur en
carbone est modeste par rapport aux plastiques et leur réactivité élevée. Ils contiennent peu de
structures aromatiques (Zhou, 1994).
Le tableau 1.5 représente l'analyse élémentaire de quelques constituants des déchets ménagers
(et du bois pour comparaison).
Nature du
combustible
C%
H%
N%
O%
S%
Cendres %
Bois
50,90
5,76
0,20
42,1
0,04
1,00
Papier-Carton
43,73
5,70
0,09
44,93
0,21
5,34
Plastique
84,54
14,18
0,06
0,00
0,03
1,19
Tableau 1.5 : Analyse élémentaire des matières sèches
Le tableau 1.6 présente les pouvoirs calorifiques inférieurs de divers types de déchets.
18
Chapitre 1 : Synthèse bibliographique
Déchets
Carton
Papier
Déchets putrescibles
Plastiques
PCI (kcal/kg)*
2271
2384
1013
5561
*Les gestionnaires ont conservé les kcal comme unité usuelle
Tableau 1.6 : Pouvoirs calorifiques inférieurs de plusieurs déchets
On observe depuis quelques années une augmentation du PCI moyen des déchets incinérés.
Cette évolution est due à un meilleur taux de recyclage des matériaux de PCI nul (verre,
métaux) par rapport aux éléments de PCI élevé (plastiques, papiers-cartons).
Le PCI des ordures brutes est de 1800 kcal/kg à 2000 kcal/kg. Après recyclage matière de 20
%, il atteint 2200 kcal/kg à 2300 kcal/kg.
De même, quand on collecte les déchets fermentescibles pour compostage ou méthanisation,
on retire des produits très humides composés d'au moins 50 % d'eau. Ce qui reste est plus sec
et donc plus facile à brûler.
Après collecte conforme à la circulaire du 28 avril 1998 (50% du gisement collecté pour la
valorisation matière et organique), après tri et compostage qui génèrent des refus secs
combustibles, le reste aura un PCI proche de 2500 kcal/kg (AMORCE, 2000).
2.4 Organisation et techniques du traitement par incinération
Une installation d'incinération comporte généralement les éléments suivants, comme
représenté sur la figure 1.4 :
• Aire de réception et de stockage des déchets : les déchets sont stockés séparément en
fonction de leur état physique, de leur conditionnement et de leur nature chimique. Les
déchets solides sont stockés en vrac dans des fosses, les déchets liquides le cas échéant
dans des bacs fermés ou des fûts. Il peut être prévu des dispositifs de pompage avec
des dispositifs de filtration et de réchauffage pour augmenter la fluidité des déchets
liquides.
• Aire de préparation : Tri, broyage, filtration, séparation, etc.
• Système d'alimentation : pour l'introduction ou l'injection des déchets.
• Chambre de combustion principale.
• Système d'allumage des déchets.
• Système de transit des déchets au travers du four.
19
Chapitre 1 : Synthèse bibliographique
• Système de brassage de la charge.
• Chambre de postcombustion.
• Système d'extraction et d'évacuation des résidus de combustion.
• Equipements pour la récupération de la chaleur sous forme de vapeur.
• Equipements de traitement et d'évacuation des fumées
- dépoussiérage : centrifugation et/ou électrofiltre et/ou filtre à manche,
- lavage - neutralisation : voie sèche ou semi-sèche, humide ou
semi-humide, voie par condensation,
- dispersion des fumées : dépend de la hauteur de la cheminée, de la vitesse des
fumées et des conditions atmosphériques.
• Des dispositifs de contrôle, de commande, etc.
• Options : couplage avec une déchetterie, une aire de maturation des mâchefers, etc.
Figure 1.4 : Vue d’ensemble d’une usine d’incinération d’ordures ménagères
Il est possible d’augmenter le PCI d’un lot de déchets par des opérations de tri, séchage (pour
les déchets humides ou les boues en utilisant les gaz de combustion du foyer), évaporation
(déchets aqueux et boues liquides).
Dans la réalité des choses, l’opérateur qui alimente le four à partir des déchets se trouvant
dans la fosse, arrive en général de visu à distinguer des lots à fort PCI d’autres lots à plus
faible PCI, ce qui lui permet en mélangeant les déchets à l’aide de son grappin d’obtenir des
lots plus ou moins homogènes.
20
Chapitre 1 : Synthèse bibliographique
2.5 Principaux types de fours
Concernant la phase de combustion en elle même, plusieurs types de fours ont été développés
et sont présentés ci-dessous. La majorité des installations sont équipées de « fours à grille »,
mais d’autres technologies comme les « fours rotatifs » ou les « fours à lit fluidisé » sont aussi
employées.
2.5.1 Le four à grille
C'est le procédé le plus utilisé pour l'incinération de déchets urbains et de façon générale de
déchets à faible PCI dans des unités à forte capacité de traitement. Les déchets sont disposés
sur des grilles qui peuvent être multiples et étagées (marches d'escaliers animées de
mouvements de va et vient, rouleaux, etc.). Le mouvement des grilles assure le brassage des
déchets (combustion complète). La température de consigne est d’environ 800 °C à 900 °C.
Les dimensions de la grille dépendent du pouvoir calorifique du combustible, et de la charge.
Le foyer est dimensionné en fonction de la taille de la grille, et de considérations
thermodynamiques pour une vitesse de gaz donnée afin d'obtenir le temps de séjour
nécessaire à une combustion complète (Jabouille, 1996). En général, la grille peut être divisée
en 4 zones correspondant à chaque phase de l'incinération : séchage, allumage, combustion,
finition (Vonrollinova, 2003).
Trémie de
chargement
chaudière
Gaz de
combustion
Vers le
traitement
des
fumées
grille
Air
primaire
mâchefers
Figure 1.5 : Schéma de principe d'un four à grille
La figure 1.5 représente le schéma de principe d’un four à grille. Les déchets sont
généralement introduits dans la zone de séchage au moyen d’un poussoir hydraulique. La
21
Chapitre 1 : Synthèse bibliographique
combustion commence à la fin de la zone de séchage. Après la combustion, les cendres sont
déchargées dans une fosse.
2.5.2 Le four rotatif
Ce type de four permet de traiter les déchets solides, liquides, pâteux et les boues à fort ou
faible PCI. Ce dernier peut varier de 1200 à 6000 kcal/kg (Vinci environnement, 2003). En
général le four rotatif est couplé à une chambre de post combustion fixe qui assure la
combustion complète en phase gaz (figure 1.6).
déchets
Chambre de postcombustion
Gaz de
combustion
poussoir
chaudière
Air de
combustion
Résidus
solides
Figure 1.6 : Schéma de principe d'un incinérateur rotatif
Largement utilisé pour l'incinération de déchets industriels plus ou moins toxiques, ce
système est également employé pour l'incinération des ordures ménagères, notamment aux
Etats-Unis. Un tel dispositif permet de travailler à température élevée, nécessaire pour
l'incinération des déchets industriels, avec un brûleur d'appoint dans la chambre de postcombustion. Dans le cas de déchets à faible pouvoir calorifique, le tambour lui-même peut
être équipé d'un brûleur auxiliaire. Les caractéristiques spécifiques de ce type de four
permettent d'assurer un temps de séjour du déchet solide aussi long que nécessaire, d'où un
très faible taux d'imbrûlés dans les résidus solides, l'oxydation complète des produits de
dévolatilisation et de pyrolyse étant assurée dans la chambre de post combustion (Sigg, 1991).
22
Chapitre 1 : Synthèse bibliographique
2.5.3 Le four à lit fluidisé
La combustion en lit fluidisé est une technique éprouvée sur le charbon ou sur certains
déchets homogènes (boues de station d'épuration). Son application au traitement des déchets
ménagers est récente en France. On compte cinq unités dont la construction a débuté entre
1995 et 1997, selon deux types de technologies : le four à lit fluidisé dense à Guerville,
Mantes, Doullens et Monthyon, et le four à lit fluidisé rotatif à Gien et Sausheim/Mulhouse.
Plusieurs de ces installations ont aujourd’hui cessé de fonctionner. Le principe de ce procédé
consiste à faire brûler un solide dans un lit de matériaux inertes (par exemple du sable) mis en
suspension par une injection d'air à sa base. Dans le four à lit fluidisé dense (Figure 1.7a), la
fluidisation du support granuleux est obtenue à la base du four. La vitesse de l'air ascendant
est alors de l'ordre de 1 à 2 m/s. La figure 1.7b représente un lit fluidisé rotatif (technologie
Ebara) (Tame, 1995) variante du lit fluidisé dense. Conçu pour le traitement thermique des
déchets urbains, il permet d'améliorer le mélange du combustible à la base du four dont la
forme spécifique autorise une évacuation plus facile d'éventuelles grosses fractions lourdes.
Une première injection d’air démarre la combustion. Au même moment de la chaux est
injectée dans le lit pour neutraliser les fumées acides. Une deuxième injection d’air a lieu dans
la chambre de post combustion. Les fumées sont ensuite montées à une température de 850 °C
pour assurer la destruction des dioxines et furanes. Les cendres produites sont refroidies à
l’air. La fraction la plus fine est recyclée dans le foyer (Lopez-Delgado et al., 2003).
Le principe de ce type de four permet d'assurer un bon mélange entre combustible et
comburant et par suite une bonne homogénéité des températures dans le four. Ces conditions
font que le procédé offre un rendement de combustion nettement supérieur à ceux obtenus
avec des fours classiques.
23
Chapitre 1 : Synthèse bibliographique
fumées
alimentation
combustible
alimentation
combustible
fumées
cendres
air
air
cendres
air
7b : lit fluidisé rotatif
7a : lit fluidisé dense
Figure 1.7 : Les fours à lit fluidisé
Les fours à lit fluidisé ne sont pas adaptés aux ordures ménagères brutes. Des prétraitements
sont nécessaires pour réduire la taille des éléments. Des problèmes techniques, notamment
dus aux ferrailles résiduelles et aux inertes de plus de 50 mm ne sont pas encore bien résolus.
En effet, ceux-ci s'accumulent, entraînant une défluidisation du lit. Dans le cas des fours à lit
fluidisé rotatif, ces éléments ont tendance à bloquer les dispositifs d'extraction des résidus.
Parmi les avantages de cette technologie, l’excellente qualité de combustion se révèle vérifiée
avec un taux d’imbrûlés de moins de 0,3 % dans les cendres. Le taux de valorisation
énergétique est par contre aujourd’hui nettement inférieur à ceux d’une installation avec four
à grille. Il ne semble pas y avoir d’avantage clair au niveau de la qualité des gaz, mis à part
une légère réduction des NOx et une faible production de CO (ADEME, 2002 (4)).
2.6 Les nouvelles technologies de traitement thermique des déchets
municipaux
Aujourd’hui, l’incinération des déchets en masse sur four à grille avec récupération d’énergie
est la technologie dominante en France et en Europe. Cependant, cette technique présente
quelques inconvénients certains. Tout d’abord, les incinérateurs ont des rendements de
conversion thermique faibles (13-24 %) principalement dus à des basses températures de
24
Chapitre 1 : Synthèse bibliographique
fumées nécessaires pour éviter les problèmes de corrosion ou de scorification. De plus les
équipements de traitement des fumées pour réduire les émissions de gaz acides et de
composés volatils sont coûteux et les métaux lourds contenus dans les résidus sont encore un
problème. De nouveaux procédés sont donc testés, à la demande des industriels et des
gouvernements.
Les procédés de pyrolyse et de gazéification sont les technologies les plus performantes en
terme de conversion d’énergie (Mc Kendry, 2002).
La pyrolyse à haute température (jusqu’à 1000 °C) et la gazéification produisent un
combustible dérivé gazeux qui est brûlé dans un four annexe. Le principe est de séparer les
phases de pyrolyse et de gazéification de la phase de combustion. La séparation est réalisée
dans des fours ou chaudières possédant différentes chambres. Ces technologies permettent
également de réduire ou d’éviter la corrosion et les émissions en retenant les métaux lourds (à
l’exception du cadmium et du mercure) et alcalins, le soufre et les chlorures dans les résidus,
prévenant ainsi la formation des dioxines et furannes et réduisant la formation des NOx. Le
gaz obtenu en sortie du réacteur peut être réutilisé dans de nombreuses applications
énergétiques (fours de cimenteries et métallurgie, chaudière à vapeur, moteurs à gaz et
turbines, …) ou comme matière première (gaz naturel synthétique, synthèse du méthanol, …).
Cependant, ces applications n’en sont encore qu’au premier stade et ne sont pas susceptibles
de jouer un rôle majeur dans un proche futur (UNFCCC, 2002 ; Nakicenovic, 1998).
Des applications à grande échelle sont néanmoins déjà en place ou en construction. Malkow
(2004) en a récemment réalisé une synthèse ainsi qu’un récapitulatif des différentes
techniques existantes. Nous citerons par exemple les usines de production de combustible
dérivé de Burgau-Unternoringen et d’Hamm-Uentrop en Allemagne, celle de Grève-inChianti en Italie ou celle de Zeltweg en Autriche.
2.7 Les sous-produits de l'incinération
Les sous-produits décrits ci-dessous sont propres aux fours à grilles et aux fours rotatifs que
nous étudierons dans la suite de cette thèse.
25
Chapitre 1 : Synthèse bibliographique
2.7.1 Les résidus solides
Dans la plupart des incinérateurs, il existe deux types principaux de résidus solides : les
Mâchefers d’Incinération d’Ordures Ménagères (MIOM) et les Résidus d'Epuration des
Fumées d’Incinération d'Ordures Ménagères ou REFIOM.
Les MIOM, qui sont récupérés sur les grilles des fours, représentent de 25 à 30 % du tonnage
d'ordures ménagères incinérées et environ 10 % de leur volume. On retrouve dans les
mâchefers issus d'un four à fonctionnement optimisé, des ferrailles, du verre et tous les
composés non volatils contenus dans les ordures ménagères. Ils peuvent être, soit stockés en
centre de stockage de classe 2, soit, sous certaines conditions, valorisés (cf. contexte
réglementaire au § 3.3).
Les fines sous grilles sont les fines qui passent au travers des grilles du four. Cette fraction
est souvent mélangée aux MIOM.
Les REFIOM proviennent, comme leur nom l'indique, du traitement des fumées
d'incinération. Cette catégorie regroupe « les cendres sous chaudières », « les cendres
volantes » et dans certains cas les produits de réactions chimiques.
Les cendres sous chaudières sont les résidus collectés sous les trémies de la chaudière.
Les cendres volantes sont des particules dont la taille est inférieure à 75 µm (Gagnepain,
1998) entraînées par le courant gazeux. Outre le panache sombre que pourrait engendrer un
incinérateur dépourvu de système de dépoussiérage, ces particules doivent leur caractère
dangereux à leur forte teneur en substances toxiques. Ces dernières sont principalement des
métaux lourds (les plus volatils) et des composés organiques provenant d'une combustion
incomplète. Les cendres volantes ont une forte propension à libérer des polluants en cas de
contact avec l’eau, ce qui implique un traitement supplémentaire avant leur stockage.
Les produits de réactions sont l’ensemble des produits des réactions chimiques entre les
fumées acides et les réactifs utilisés pour les neutraliser. Les procédés de traitement sont
détaillés dans le paragraphe suivant.
Les REFIOM représentent de 2 à 5 % du tonnage d'ordures ménagères incinérées ; ils
concentrent les polluants volatils contenus dans les ordures ménagères : chlorures, sulfates
(captés lors de la neutralisation des fumées acides) et certains métaux lourds (plomb, zinc,
mercure, cadmium, chrome, …). Ce potentiel polluant les rend non valorisables. Ils ne
peuvent être éliminés qu'en centre de stockage de classe 1, après stabilisation.
26
Chapitre 1 : Synthèse bibliographique
2.7.2 Les effluents gazeux
Outre les cendres volantes dont la toxicité a été évoquée précédemment, les fumées produites
par l'incinération contiennent un grand nombre d'espèces gazeuses. Classiquement, les
produits d'une réaction complète de combustion sont le dioxyde de carbone et l'eau.
Cependant, ces conditions idéales ne peuvent être rencontrées dans le cas de l'incinération des
déchets et la combustion conduit aussi à la formation de monoxyde de carbone et autres
composés organiques volatils. De plus, à la sortie de la chaudière, la totalité des gaz acides
n’a pas été neutralisée et les métaux les plus volatils sont encore en phase vapeur.
Les différents procédés de traitement des effluents gazeux consistent à neutraliser les gaz
acides au moyen d’une base (généralement l’hydroxyde de calcium). Il existe deux façons de
procéder :
• la neutralisation des gaz est réalisée, après la filtration des cendres volantes, en phase
humide pour le procédé dit « humide ». Dans ce cas les cendres volantes sont
collectées sous le filtre et les produits de neutralisation des gaz acides sont évacués
avec les eaux de lavage.
• la neutralisation des gaz est réalisée, avant la filtration des cendres volantes, en phase
sèche, pour les procédés dits « secs » et « semi-humide ». Les résidus collectés sous le
filtre sont donc constitués des cendres volantes, des produits de réactions et du réactif
de neutralisation en excès.
Les différents types de procédés sont les suivants :
a- Procédé par voie sèche
Les gaz de combustion contenant les polluants particulaires et gazeux sont traités par voie
sèche dans une gaine de réaction. Le réactif basique finement broyé est injecté par voie
pneumatique dans la gaine de réaction où il est mélangé aux gaz de combustion. Les gaz
acides sont neutralisés en phase sèche au contact du réactif basique.
b- Procédé par voie semi-humide
Le gaz de combustion est traité dans une enceinte de réaction où une solution basique est
pulvérisée par une turbine tournant à grande vitesse. La vaporisation d’eau entraîne la
cristallisation des sels dissous dans les gouttelettes et une diminution de la température des
fumées. Ceci favorise les réactions de neutralisation et la condensation des métaux lourds.
27
Chapitre 1 : Synthèse bibliographique
Lorsque toute l’eau s’est évaporée, les gaz acides résiduels sont neutralisés en phase sèche au
contact du réactif basique.
c- procédé par voie humide
Les cendres volantes contenues dans le gaz sont préalablement captées par un dépoussiéreur.
Les gaz acides sont ensuite dissous dans une solution de lavage circulant dans une tour puis
neutralisés par un réactif basique. Les solutions de lavages récupérées sous la tour sont
dirigées vers une installation de traitement afin d’en extraire les particules en suspension et les
métaux lourds.
Un dispositif d’injection de charbon actif dans les fumées épurées issues de ces procédés,
permet ensuite de parfaire le traitement des métaux lourds gazeux et des composés
organiques, avant leur rejet à l’atmosphère.
2.7.3 Les résidus liquides
Dans une usine d'incinération d'ordures ménagères, l'eau est utilisée pour l'extinction et le
refroidissement des mâchefers, et peut éventuellement intervenir dans le dispositif de
traitement des fumées. Approximativement 0,3 à 0,8 m3 d'eau sont nécessaires à l'extinction
des mâchefers d'une tonne de déchets. L'étude réalisée par Sigg (1991) sur un incinérateur
allemand, indique que cette eau présente un caractère basique, et des concentrations en
métaux lourds acceptables. L'eau provenant du système de lavage des fumées a des
caractéristiques tout à fait différentes et doit donc faire l'objet d'un traitement avant d'être
rejetée.
2.7.4 Cas des fours à lit fluidisés
Les résidus obtenus après combustion sont, comme dans les incinérateurs usuels, de deux
types : les cendres lourdes et les cendres légères, correspondant respectivement aux mâchefers
et aux cendres volantes. Toutefois, les proportions sont nettement différentes puisqu'elles sont
de l'ordre de 50 % de cendres lourdes et 50 % de cendres légères dans le cas des résidus des
fours à lit fluidisé, contre 90 % de mâchefers et 10 % de cendres volantes pour les fours à
grilles classiques. Il semblerait que la nature et les caractéristiques des produits de combustion
en lit fluidisé soient sensiblement différentes de celles des cendres volantes, ne les soumettant
donc pas à la même législation. C'est pourquoi le Ministère de l'Environnement a lancé un
28
Chapitre 1 : Synthèse bibliographique
programme de travail visant à établir une réglementation plus large couvrant l'ensemble des
Résidus de Procédés Thermiques (RPT) dont les mâchefers font partie. Ce programme est
étendu aux centrales à charbon, à la métallurgie et à la sidérurgie. Il vise à définir une
méthode d'orientation des RPT pour tous les types de scénario de stockage, d'utilisations
envisagées et proposer une base scientifique pour le choix des critères seuils (Chateau, 2001).
2.8 Répartition des polluants dans les résidus
L’incinération des déchets induit la concentration des métaux polluants dans les résidus
finaux. Les composés minéraux ou métalliques présents dans les déchets, vont se répartir
entre les MIOM, les REFIOM et les fumées (Figure 1.8) en fonction :
• de la température de combustion.
• du mode de traitement des fumées.
• de la composition des ordures ménagères.
• des propriétés physico-chimiques de ces éléments toxiques et notamment leur
température de fusion et de vaporisation.
Les substances volatiles seront plus concentrées dans les REFIOM, et les éléments peu
volatils seront présents dans les MIOM. Le mercure, par exemple, sera essentiellement
présent sous forme gazeuse dans les fumées.
On peut considérer deux catégories de métaux selon leurs propriétés (température d’ébullition
et de tension de vapeur) et l’influence des processus auxquels ils sont soumis (Brunner, 1998).
• Dans le cas des métaux tels que l’aluminium, dont la formation d’oxyde est plus
probable que celle de chlorure, ils ne subiront pas de volatilisation mais s’oxyderont
en surface et fondront peut être. Ils ne pourront donc être transportés dans les fumées
que sous forme solide. Ils seront en effet en faible proportion dans les cendres de
dépoussiérages et présents majoritairement dans les mâchefers.
• La seconde est constituée entre autres, de dérivés du plomb, zinc, cuivre et argent
dont les chlorures, généralement plus volatils, se forment plus facilement que les
oxydes. Leur volatilisation dans le four est suivie par une recondensation plus ou
moins complète. Ces métaux pourront donc être présents à la fois dans les cendres et
dans les MIOM.
29
Chapitre 1 : Synthèse bibliographique
100%
90%
80%
70%
60%
phase vapeur
50%
cendres volantes
40%
mâchefers
30%
20%
10%
0%
Fe
C
S
Cl
Cd
Cu
Hg
Pb
Zn
Figure 1.8 : Répartition de certains éléments entre les différents produits issus de l'incinération
d'après Brunner (1998)
Du fait d’une combustion incomplète, les résidus de l’incinération, MIOM et REFIOM,
peuvent également contenir des composés organiques, souvent toxiques. Les MIOM
présentent dans certains cas, des taux en imbrûlés relativement importants et les teneurs en
carbone organique total, mesurées dans les lixiviats de MIOM peuvent être élevées (Quilici,
2001). En ce qui concerne les polluants organiques dans les fumées, il peut y avoir
recombinaison du carbone avec notamment du chlore et formation de produits de combustion
incomplète (Boscak, 1993).
Le chlore et le soufre se répartissent également entre MIOM et REFIOM en fonction de leur
volatilisation sous forme d’acide.
Les REFIOM, résidus les plus toxiques, sont enfouis sécuritairement dans des centres
d’enfouissement techniques de classe 1. Les MIOM, représentant des tonnages nettement plus
importants (90 % des résidus solides) présentent un potentiel polluant moins élevé qui est
évalué par un ensemble de tests décrits dans les paragraphes suivants. A l’issue de ces tests,
ils sont soit recyclés, soit stockés en centre d’enfouissement technique de classe 2.
3 LES MACHEFERS D’INCINERATION D’ORDURES MENAGERES (MIOM)
3.1 Le gisement de mâchefers
En France, en 2002, les mâchefers représentent plus 3,0 millions de tonnes (ADEME (1),
2002). Ils peuvent être valorisés en technique routière (sous réserve de conformité à la
réglementation) soit directement, soit après passage sur une Installation de Maturation et
30
Chapitre 1 : Synthèse bibliographique
d’Elaboration (IME). Ces installations stockent les mâchefers pendant un temps nécessaire à
la stabilisation chimique du matériau. Cette période ne peut excéder une année. Les mâchefers
peuvent également y subir divers types de traitements de déferaillage, criblage ou retrait des
métaux non ferreux. L’intérêt de l’IME est d’obtenir un matériau traité, maturé et calibré.
La figure 1.9 représente la répartition des mâchefers selon leur devenir.
3%
14 %
19 %
64 %
autres
Valorisation matière
Centre de stockage
Maturation
Figure 1.9 : Répartition des mâchefers selon leur devenir (% massique)
En 2002, 398 000 tonnes de mâchefers, soit 14 % des mâchefers produits, sont valorisés
directement en sortie d’incinération. 1 921 000 tonnes, soit 64 % des mâchefers sont envoyés
vers une installation de maturation et d’élaboration de mâchefers. 97 % des mâchefers traités
suivant cette filière sont ensuite valorisés. Enfin, 623 000 tonnes de mâchefers, soit 21 %,
sont éliminés en centre de stockage de classe 2, soit directement soit après maturation.
La valorisation des mâchefers se fait de plus en plus souvent après une phase de maturation
(64 % en 2002, 50 % en 2000). Le recours à l’enfouissement reste important et stable (22 %
en 2000, 19 % en 2002).
31
Chapitre 1 : Synthèse bibliographique
3.2 Les caractéristiques
3.2.1 Les caractéristiques physiques
3.2.1.1 Aspect général
Les mâchefers, qui contiennent 90 à 95 % (% massique) des matériaux inertes présents dans
les ordures ménagères, se présentent sous la forme d’un mélange gris sombre hétérogène de
scories, de métaux ferreux et non ferreux, de céramiques, verres et autres non combustibles.
Une part d’imbrûlés organiques est également présente dans les mâchefers.
3.2.1.2 La teneur en eau
En sortie de four les mâchefers sont refroidis par aspersion d’eau ou par immersion dans un
bain. Ils sont donc humides et leurs taux d’humidité varient en fonction du système de
refroidissement utilisé.
Cette humidité a un rôle sur la durée de maturation nécessaire et sur l’évolution du mâchefer
(capacité de prise mécanique ultérieure). Les valeurs trouvées dans la littérature indique une
teneur en eau de 20 à 30 % (Blanchard et al., 1989), confirmée par des mesures plus récentes
(Sylvestre, 2001)
3.2.1.3 La masse volumique
La masse volumique apparente des mâchefers secs après déferaillage et concassage est de
l’ordre de 1100 à 1200 kg/m3 (Eighmy et al., 1992). La masse volumique réelle est de l’ordre
de 2500 kg/m3 (Blanchard et al., 1989).
3.2.1.4 Le pouvoir calorifique inférieur (PCI)
Peu de données sont disponibles sur le PCI des mâchefers. Blanchard et al. (1989) annoncent
une valeur de l’ordre de 2500 kJ/kg, soit environ 600 kcal/kg. Cela dépend bien entendu du
taux d’imbrûlés en sortie de four.
3.2.1.5 Les caractéristiques géotechniques
Les mâchefers sont caractérisés sur la base des critères habituels d’identification de la nature
des matériaux (granulométrie, propreté, résistance aux chocs et attrition), de l’état (teneur en
eau et indice portant immédiat) et des résistances mécaniques (Crignon, 2004).
32
Chapitre 1 : Synthèse bibliographique
3.2.2 Les caractéristiques chimiques
3.2.2.1 Composition élémentaire
Les caractéristiques chimiques des MIOM et autres déchets servent de base à leur
classification en déchets dangereux ou non. Les MIOM contiennent des quantités variables de
métaux lourds et de sels solubles ayant un impact potentiellement négatif sur l’environnement
s’ils ne sont pas correctement traités ou stockés. Le cadmium et le plomb sont les principaux
éléments contrôlés ainsi que le cuivre et le mercure, au regard de leur toxicité aquatique
(Wiles, 1996).
Le tableau 1.7 récapitule la composition élémentaire moyenne de MIOM en provenance de
plusieurs incinérateurs d’ordures ménagères en mg/kg et le tableau 1.8 récapitule les éléments
majeurs en pourcentage massique après oxydation.
Elément
mg/kg (IAWG, 1994)
mg/kg (KIDA et al.,1996)
Ag
0,29-0,37
Al
22 000-73 000
47 000-110 000
As
0,12-190
1,1-3,9
B
38-310
Ba
400-3000
C
10 000-60 000
Ca
37 000-120 000
170 000-240 000
Cd
0,3-71
0,79-5,6
Cl
800-4200
Co
6-350
10-28
Cr
23-3200
130-500
Cu
1901-8200
250-2500
Fe
4100-150 000
14 000-49 000
Hg
0,02-7,8
K
750-16 000
7100-24 000
Mg
400-26 000
19 000-31 000
Mn
83-2400
310-710
Mo
2,5-280
3,8-6,7
N
110-900
Na
2900-42 000
13 000-29 000
Ni
7-4300
31-140
33
Chapitre 1 : Synthèse bibliographique
O
400 000-500 000
P
1400-6400
Pb
98-14 000
94-1800
S
1000-5000
180-2000
Sb
10-430
9,5-71
Se
0,05-10
Si
91 000-310 000
Sn
2-380
74-650
Sr
85-1000
250-390
Ti
2600-9500
8000-18 000
V
20-120
63-89
Zn
610-7800
1600-4000
Tableau 1.7 : Composition élémentaire de MIOM en provenance de plusieurs d'incinérateurs
Oxydes (%
Min Li et al., 2004
Bethanis et al., 2002
massique)
Appendido et al.,
Freyssinet et al.,
2004
1998
SiO2
40,03
40,09-42,12
40,8-42,5
54,10
Al2O3
8,40
9,92-14,20
13,6-17,6
7,30
Fe2O3
5,83
6,20-6,60
5,7
0,45
CaO
14,86
18,42-20,01
12,2-16,4
16,60
MgO
2,24
1,79-1,90
1,3-3,1
2,35
Na2O
0,96
2,60-2,75
10,9-12,9
5,60
K2O
1,47
0,86-0,92
1,8
0,85
TiO2
1,13
1,00-1,14
1,2-2,5
0,65
P2O5
1,14
1,34-1,44
MnO
0,17
0,08
SO3
2,52
1,50
Cl
0,44
0,28
Perte au feu
15,53
0,95
0,1
0,11
11,8-12,3
Tableau 1.8 : Composition chimique en éléments majeurs des mâchefers
80 à 90 % de la masse du mâchefer consiste en composés de Si, Fe, Ca, Al, Na et K classés
dans l’ordre décroissant (Chandler et al., 1997). Le silicium provient essentiellement du verre
et des faïences contenus dans les ordures ménagères. L’aluminium et le fer proviennent des
objets métalliques (boîte de conserves, …). Le calcium provient des déchets de nourriture et
du papier ou CaCO3 est souvent utilisé comme additif (Fujimori et al., 2004).
34
Chapitre 1 : Synthèse bibliographique
Les données du tableau 1.8 montrent que les mâchefers sont des matériaux siliceux (entre 40
et 50 % de SiO2). Les autres oxydes les plus abondants sont toujours CaO, Al2O3, FeO (et
Fe2O3) et Na2O.
Certains auteurs ont montré que les teneurs en éléments variaient en fonction de la
granulométrie (Chimenos et al., 1999 ; Shim et al., 2003 ; Song et al., 2004). Les teneurs en
SiO2, Fe2O3 et Na2O sont en proportions plus importantes dans les fractions fines que dans les
fractions grossières, à l’inverse des teneurs en CaO (Freyssinet et al., 1998).
Les particules de
4 à 25 mm, représentant 50 % des MIOM en masse contiennent
essentiellement du verre (> 50 % de cette fraction), des céramiques synthétiques (> 26 %) et
des minéraux (> 8 %), et apparaissent comme étant appropriées pour un recyclage en matériau
de construction. Les métaux magnétiques s’accumulent dans la fraction 1-6 mm. Les métaux
lourds s’accumulent dans la fraction inférieure à 1 mm (Chimenos et al., 1999).
3.2.2.2 Les caractéristiques minéralogiques
La composition minéralogique joue un rôle très important dans la compréhension du
comportement et du caractère dangereux des MIOM. En effet, la toxicité du déchet dépend
non seulement des concentrations en polluants mais aussi de la forme sous lesquels ils se
trouvent et de la nature des phases qui les contiennent (Speiser et al., 2001).
a- Mâchefers frais
Les mâchefers peuvent être divisés en deux phases (Dykstra et al., 1999) :
-
Une partie dite « scoriacée » de densité faible qui contient tous les produits dont la
température de fusion n’a pas été atteinte tels que les verres, les débris métalliques
ou les granulats naturels.
-
Une partie « vitreuse » provenant de la fusion partielle ou totale des déchets où
l’on observe une phase cristalline incorporée.
Les phases vitreuses contiennent de grandes quantités de Si mais peu de Ca. Leur couleur
dépend de leur composition chimique (Fe, Cr), et peut être de différents marrons ou verts,
voire incolore (Chimenos et al., 1999).
La partie cristalline est composée de fragments minéraux (quartz SiO2, feldspath
(K,Na)[AlSi3O8] et Na[AlSi3O8]-Ca[Al2Si2O8], calcite CaCO3 et dolomite (CaMg)CO3) et de
fragments de verre ou de céramiques n’ayant pas été altérés par le procédé d’incinération. Des
phases cristallines formées durant la combustion sont aussi présentes : les phases dendritiques
35
Chapitre 1 : Synthèse bibliographique
et skeletales incorporées aux matrices vitreuses sont typiques de produits éteints. Ces phases
sont principalement composées de silicates (pyroxene, monticellite, melilite), d’oxydes
(spinel (Al,Ti,Cr,Fe)2(Fe,Mg,Zn)O4, ilmenite FeTiO3) et de traces de sulfures (pentlantide
(Fe,Ni)9S8). De plus, la chaux CaO et les sulfates (anhydrites) sont produits par les processus
de dissociation thermique (Speiser et al., 2001).
Une analyse plus poussée permet de reclasser les produits fondus en deux types de verre : le
verre isotropique et le verre opaque. Les complexes minéraux silicatés sont précipités et sont
abondants dans le verre isotropique tandis que les oxydes métalliques et les minéraux silicatés
sont tous deux précipités dans le verre opaque.
Les verres isotropiques et opaques se forment simultanément à des endroits différents de la
grille de combustion. La différence des températures de fusion des deux verres suggère que
les isotropiques fondus sont produits dans des points chauds et que les opaques fondus se
forment en des points froids de la grille. Cela pourrait être une conséquence de la distribution
hétérogène du combustible sur la grille ou de points chauds où l’air est introduit à travers la
grille. Parfois, les deux verres peuvent se mélanger.
La grande ressemblance des MIOM suggère que malgré l’hétérogénéité du remplissage des
déchets, les hautes températures de combustion produisent des MIOM de composition et de
structure relativement uniforme (Dykstra et al., 1999).
b- Evolution des mâchefers
La minéralogie des mâchefers évolue rapidement au cours du temps et au cours de la
maturation :
Dés le début du stockage des MIOM, des réactions exo et endothermiques sont observées. Au
cours de ces réactions, de nouvelles phases sont formées, notamment le gypse CaSO4,2H2O, la
portlandite Ca(OH)2, l’ettringite Ca6[Al(OH)6]2(SO4)3,26H2O, différents sels (chlorures et
sulfates), des oxydes métalliques et hydroxydes, des carbonates (calcite et dolomite) et des
hydrates de calcium-aluminium-fer-silicate (phases cimenteuses, ettringite).
Le tableau 1.9 reporte les différentes phases, les plus souvent observées dans la littérature,
présentes dans les mâchefers.
36
Chapitre 1 : Synthèse bibliographique
Famille
Espèce minérale
Formule chimique
Silicates
Alite
Ca3SiO5
Clinopyroxène
Ca(Fe,Mg,Al)(Si,Al)2O6
Géhlénite
(Ca,Na)2(Al,Mg)(Si,Al)2O7
Larnite
Ca2SiO4
Mullite
Al2SiO5
Olivine
(Fe,Mg,Ca)SiO4
Plagioclase
(Ca,Na)(Si,Al)4O8
Pseudowollastonite
CaSiO3
Quartz
SiO2
Talc
Mg3(OH)2Si4O10
Corindon
Al2O3
Hématite
Fe2O3
Hercynite
FeAl2O4
Magnétite
Fe3O4
Rutile
TiO2
Spinelle
MgAl2O4
Oxydes
Wustite
FeO
Zincite
ZnO
Boehmite-Bayerite-Gibbsite
Al(OH)3
Goethite
FeO(OH)
Portlandite
Ca(OH)2
Calcite
CaCO3
Siderite
FeCO3
Dolomite
(CaMg)CO3
Halite
NaCl
Nantokite
CuCl2
Sylvite
KCl
Anhydrite
CaSO4
Gypse
CaSO4,2H2O
Ettringite
Ca6[Al(OH)6]2(SO4)3,26H2O
Phosphates
Apatite
Ca(PO4)3(OH,F,Cl)
Sulfures
Pyrrhotite
FeS
Métaux
Aluminium métal
Al0
Cuivre métal
CuO
Fer métal
Fe0
Graphite
C
Verre néoformé
(Si, Na, Ca, Al)
Hydroxydes
Carbonates
Chlorures
Sulfates
Autres
Tableau 1.9 : Liste simplifiée des phases les plus souvent identifiées dans la littérature (d’après
Eighmy et al., 1994 ; Zeebrugge et al., 1994 ; Pfrang-Stoz et Schneider, 1995 ; Freyssinet et al.,
1998 ; Eusden et al., 1999 ; Piantone et al., 2004)
37
Chapitre 1 : Synthèse bibliographique
3.2.3 Matière organique
3.2.3.1 Compositions globales
L’observation d’un stock de mâchefer frais permet souvent d’identifier la présence d’imbrûlés
de type papier, carton, fibres synthétiques, fragments d’os, pelure d’agrumes et de bananes
responsables de la présence de carbone (Pépin et al., 2001).
Les espèces constituant le carbone organique peuvent être classées en 3 catégories :
- Le carbone organique non extractible (94 % du Carbone Organique Total (COT)) :
cette fraction est composées en grande majorité de cellulose et de lignine.
- Le carbone organique extractible à l’eau (6 % du COT) : composé de substances
humiques, acides carboxyliques et divers composés hydroxylés dont le glycérol.
- Le carbone organique soluble par solvant (0,2 % du COT) : composé d’alcanes
linéaires (12 < n < 36), de stéroïdes (biodégradable), d’acides gras saturés, de phtalanes, de
Hydrocarbures Aromatiques Polycycliques (HAP), et de PolyChloroBiphényles (PCB)
(Dugenest et al., 1999 ; Pasavars, 2000).
Des analyses thermiques menées sur différents types de mâchefers supportent l’hypothèse
qu’il existe différents types de matériels carbonés ayant deux comportements thermiques
différents, le carbone labile (COL) et le carbone réfractaire (CR) (Quilici, 2001). Le COL
comprend des composés légèrement modifiés au cours du processus d’incinération. Ces
molécules organiques proviennent de la dégradation des composés de bois, cartons, papiers,
plastiques et nourriture essentiellement, et montrent un comportement thermique typique
(réaction exothermique de combustion) entre 300 et 325 °C. Il comprend de petites molécules
imbrûlées ou décomposées, plus volatiles et en partie extractibles à l’eau. Le CR résulte,
quant à lui, de la pyrolyse des produits organiques cités plus haut. Il comprend du carbone
élémentaire de structure similaire au graphite et du carbone organique résistant. Ce CR
s’oxyde dans la région des hautes températures (435-470 °C). Le rapport COL/CR pourrait
être un bon indicateur des conditions de combustion (apport en oxygène et distribution en
température dans le four) utilisées lors de l’incinération.
3.2.3.2 Teneur et distribution de la matière organique
La teneur en matière organique est classiquement déterminée par perte au feu et plus rarement
par détermination du carbone organique total. La teneur en matière organique dépend bien sûr
38
Chapitre 1 : Synthèse bibliographique
de la composition du gisement entrant mais aussi du type de four utilisé (à grille, tournant, lit
fluidisé). Les valeurs relevées dans la littérature montrent que les teneurs moyennes en COT
se situent entre 0,2 % et 5 % de la matière sèche (Pepin et al., 2001 ; Ferrari et al., 2002).
Les plus fortes teneurs en matière organique sont mesurées dans les classes granulométriques
suivantes [2,36-3,35 mm] (20 %), [1-2,36 mm] (32 %), [0,63-1 mm] (11 %) (Dugenest et al.,
1999).
3.2.3.3 Evolution et influence de la matière organique sur le comportement des MIOM
La plupart des études menées sur la matière organique portent sur la détermination du COT
ou sur la quantité de Carbone Organique Dissous (COD) lors de la mise en contact des MIOM
avec l’eau. Le COD est en effet un paramètre réglementé dans la circulaire de 1994 pour la
valorisation des MIOM. Outre la pollution engendrée par les composés organiques, la
lixiviation de ces éléments peut affecter celle de certains métaux avec des ligands organiques.
Meima et al. (1999) ont mis en évidence que le cuivre lessivé est très largement lié à la
matière organique sous forme de complexes organo-métalliques.
Cependant, le carbone organique pourrait également représenter un fort potentiel de réactions
microbiologiques pouvant influencer le comportement à long terme des mâchefers. Des
expériences de laboratoire ont montré que le carbone organique contenu dans les MIOM peut
être dégradé par des microorganismes, y compris dans des conditions alcalines (Belevi et al.,
1993). Durant ce processus, le pH des lixiviats décroît de 10,4 à 8,3 après 336 h d’incubation.
Les auteurs de cette étude concluent que la dégradation microbiologique du carbone
organique peut influencer la mobilisation de métaux lourds puisque le pH est l’un des
paramètres majeurs contrôlant la lixiviation des métaux (§ 3.2.5).
L’hypothèse d’une influence de cette biodégradation sur la carbonatation des MIOM a
également été soulevée par Kaibouchi (2003).
Les aspects relevant des réactions de biodégradation des MIOM et de leurs effets possibles
sur les MIOM ont cependant été peu étudiés et sont relativement mal connus.
3.2.4 Répartition des métaux lourds
Les concentrations en métaux lourds varient fortement dans les mâchefers et sont, avant tout,
dépendantes des déchets entrant dans l’incinérateur. Lors de la combustion le fer, le cuivre, le
chrome et l’aluminium sont principalement transférés dans les MIOM alors que le cadmium,
39
Chapitre 1 : Synthèse bibliographique
volatil, est transféré dans les REFIOM. Deux tiers du plomb et du zinc restent dans les MIOM
malgré leur volatilité (Jung et al., 2003).
Les principaux polluants métalliques sont le cuivre, le plomb, le zinc et le chrome. Leur
répartition dans les phases de haute température dépend des conditions d’oxydation lors de la
combustion. Ainsi en milieu oxydant, les métaux lourds se trouvent préférentiellement dans
les silicates et les oxydes. C’est le cas du zinc dans les pyroxènes et la magnétite, et du
chrome dans les pyroxènes et les spinelles. En milieu réducteur, les métaux se trouvent sous
la forme de billes de sulfures métalliques dans le verre néoformé. C’est le cas notamment du
plomb et du cuivre. Dans la partie dite « scoriacée », les métaux peuvent se trouver sous
forme métallique (Cu), sous forme d’alliages (Pb) et sous forme d’oxydes (Zn) (Delville et
al., 2001).
Lors de la phase de maturation (vieillissement des MIOM), les métaux lourds sont piégés
dans les phases néoformées / Pb dans l’ettringite, As dans les oxydes de fer, Pb, Zn et Cd dans
les carbonates. Les sulfates peuvent également piéger certains métaux mais ces assemblages
sont moins stables aux changements de conditions environnementales donc moins résistants à
long terme (Piantone et al., 2004).
3.2.5 Comportement à la lixiviation
Le comportement à la lixiviation à long terme des mâchefers est le facteur le plus important
dans l’évaluation de l’impact associé à leur utilisation en Bâtiment et Travaux Publiques
(BTP) ou à leur mise en décharge.
3.2.5.1 Concept de base de la lixiviation
La lixiviation peut être définie de façon très générale comme la mobilisation, l’extraction ou
encore le lessivage des constituants d’une phase solide lorsque ceux-ci sont mis en contact
avec un solvant dont la composition peut être variable. La lixiviation des résidus
d’incinération constitue très certainement un des systèmes les plus complexes (phase solide/
agent lessivant/soluté). La complexité d’un tel système repose en fait sur une multitude de
phénomènes différents (sorption, dissolution, précipitation, …) dans lesquels vont intervenir
une série de paramètres pouvant influencer les équilibres régissant le système.
40
Chapitre 1 : Synthèse bibliographique
L’aspect chimique de la lixiviation est tout aussi intéressant. L’ensemble des réactions
chimiques est réversible et certaines seront plus rapides que d’autres. Les réactions en phase
aqueuse comme les réactions acide-base ou les réactions de complexation sont généralement
rapides, de l’ordre d’une fraction de seconde à quelques secondes. Les réactions d’adsorption
sont, par exemple pour le plomb et le cadmium à la surface d’oxydes, d’une durée de l’ordre
de l’heure à la journée. Les réactions de précipitation, de dissolution et d’oxydo-réduction en
phase solide sont plus lentes, l’ordre de grandeur étant de l’heure à l’année.
On trouve dans la littérature de nombreuses études permettant de relier d’autres paramètres
impliqués dans les mécanismes de lixiviation. L’étude de tous ces paramètres n’étant pas le
but final de ce travail, il est proposé une approche générale figure 1.10. La compréhension du
comportement fondamental des divers types de cendres durant la lixiviation requiert la
considération de ces nombreux facteurs. Comme le montre la figure 1.10, la nature du lixiviat
peut être fortement influencée par la spéciation des éléments dans la phase solide. D’autre
part, les phénomènes de diffusion contrôlant les réactions de précipitation et d’adsorption sont
étroitement liés à la morphologie et à la porosité des particules de la phase solide.
La caractérisation des processus de lixiviation doit également tenir compte des grands
principes de base de la cinétique et de la thermodynamique. Le couplage de paramètres
physico-chimique tels que le pH, le potentiel d’oxydoréduction, la présence de ligands, le
ratio liquide/solide, le temps et la température, sera déterminant sur les équilibres de
solubilisation des espèces organiques et inorganiques.
spéciation
chimique
thermodynamique
Influence du pH,
p. redox, ligand
fraction
disponible
comportement
fondamental de lixiviation
sorption
morphologie
des particules
cinétique
influence du ratio
L/S
Figure 1.10 : Interférences et concept de base reliés à la lixiviation
41
Chapitre 1 : Synthèse bibliographique
3.2.5.2 Les tests de lixiviation
L’intérêt des tests de lixiviation est d’obtenir, à l’aide d’une technique simple d’interaction
eau-déchet et d’un matériel analytique classique, des informations rapides sur les substances
immédiatement solubilisables contenues dans un échantillon représentatif d’un déchet.
Aujourd’hui, une grande variété de normes et de procédures existe pour évaluer le potentiel
polluant des déchets et des déchets solidifiés :
• France : X31-210, X31-211, X30-407
• Pays-Bas : Tank Leaching Test (TLT)
Availibility Test (AT)
Column Test NEN 7343
• Allemagne : DIN 38414 S4
• Suisse : Ordonnance sur le Traitement des Déchets (OTD)
• Canada : Leachate Extraction Procedure (LEP)
• Etats-Unis : Toxicity Characteristics Leaching Procedure (TCLP)
ANSI/ANS 16.1 (American Nuclear Society Leachability Test).
Ces tests sont mis en oeuvre dans des conditions qui sont prédéfinies : durée de lixiviation,
pH de la solution de lixiviation, rapport quantité liquide/solide (L/S), durée d’agitation.
3.2.5.3 Basicité des lixiviats des mâchefers
Le pH naturel des lixiviats des mâchefers est obtenu par la mise en contact du matériau avec
de l’eau déminéralisée. En sortie de four, le pH se situe généralement entre 11 et 12,5
(Fournier et al., 1995 ; Chandler et al., 1997). Toutes les études (Johnson et al., 1995 ;
Freyssinet et al., 1998 ; Bodénan et al., 2001 ; Giampaolo et al., 2002) s’accordent pour
estimer que cette alcalinité est essentiellement due à la présence de portlandite (Ca(OH)2),
produit de l’hydrolyse de la chaux vive, et, dans une moindre mesure, à des composés de type
ettringite.
De plus, les MIOM possèdent un pouvoir tampon qui est un paramètre important dans
l’évaluation de leur comportement à la lixiviation. Il est caractéristique de leur capacité à
neutraliser un lixiviant à caractère acide (test de Capacité de Neutralisation Acide : CNA),
42
Chapitre 1 : Synthèse bibliographique
c’est à dire dont le pH est inférieur au pH naturel. Le pouvoir tampon permet donc d’évaluer
leur comportement chimique face à une agression acide (Giampaolo et al., 2002).
3.2.5.4 Spéciation et mobilité des métaux lourds
La solubilité de différents métaux lourds en équilibre avec des MIOM après 24 h dans des
solutions préparées en laboratoire est représentée sur la figure 1.11 en fonction du pH. En
référence, la concentration totale en cation en équilibre avec les carbonates et les hydroxydes
métalliques est représentée (Jonhson et al., 1996).
Figure 1.11 : Concentration de Zn, Cu, Pb et Cd dans les lixiviats des MIOM en fonction du pH.
Les lignes continues représentent les concentrations de saturation par rapport aux carbonates et
aux hydroxydes (Johnson et al., 1996)
Les concentrations les plus faibles pour chaque cation sont observées dans les zones de pH
neutre à légèrement alcalin. Les concentrations augmentent quand le pH décroît et ceci dans
tous les cas pour atteindre un maximum dans les zones de pH acide. Pour le zinc et le
cadmium le plateau est atteint à des pH de 5-6 et pour le plomb aux alentours de 4. La
solubilité du plomb et du cadmium est contrôlée par la précipitation des carbonates. Pour le
cuivre, la tendance est moins évidente. Sa solubilité est plus importante que celle limitée par
la formation de Cu(OH)2. Des complexes avec des ligands organiques peuvent expliquer la
solubilisation plus complexe de ce métal.
43
Chapitre 1 : Synthèse bibliographique
3.2.5.4 Mobilité d’autres éléments
Lors de la lixiviation de mâchefers frais, les éléments les plus lixiviables sont le calcium, le
sodium et le potassium. Les relargages du sodium et du potassium sont indépendants du pH ;
ils sont contrôlés par la solubilité des composés tels que NaOH, KOH, NaCl, KCl et
K2Ca(SO4)2 (Kida et al., 1996).
Les sources de Ca2+ relativement solubles sont : la portlandite (hydroxyde), le gypse et
l’anhydrite (sulfates). La dissolution de ces composés est observée après la dissolution des
composés les plus solubles cités ci-dessus.
Le comportement des sulfates est souvent lié à celui du calcium. Pour une gamme de pH
comprise entre 4 et 10, les concentrations de sulfates dépendent du pH et suivent la courbe de
solubilité du gypse, les concentrations lixiviées augmentant avec la baisse de pH. Pour des pH
supérieurs à 10, les phases minérales contrôlant la solubilisation des sulfates ne sont pas bien
connues (Cadler et al., 1997).
Le comportement du silicium est contrôlé par la cinétique de dissolution des verres non
altérés dans le four, des verres formés pendant l’incinération, du quartz (Kida et al., 1996) et
d’autres silicates de calcium hydraté présents dans les mâchefers.
Les concentrations en magnésium semblent contrôlées par la brucite (Mg(OH)2) en région
basique et par les carbonates sur le reste du domaine de pH.
La solubilité de l’aluminium est fortement dépendante du pH, les concentrations étant en
équilibre thermodynamique avec la gibbsite (Al(OH)3) cristalline et amorphe. Cependant, en
région très basique (pH > 13), la formation d’aluminosilicates pourrait contrôler la
solubilisation de l’aluminium, l’ettringite étant également suggérée (Kida et al., 1996).
3.2.6 Toxicité des mâchefers
On appelle poison ou toxique une substance qui peut créer un dommage par une interaction
physico-chimique avec un organisme vivant. La toxicologie désigne la science des toxiques et
des poisons, l’écotoxicologie celle qui étudie l’évolution des produits et leurs conséquences
sur les écosystèmes, en particulier les impacts des substances toxiques sur la dynamique des
populations en milieu aqueux. La toxicité des composés dans le milieu naturel est difficile à
44
Chapitre 1 : Synthèse bibliographique
appréhender car elle est fonction de leur solubilité et des caractéristiques du milieu (pH,
humidité, potentiel redox, …).
Le test de lixiviation ne permet pas de déterminer entièrement le potentiel toxique des MIOM.
Van der sloot (2002) et Lapa et al. (2002) rappellent l’importance de pratiquer plusieurs types
d’analyses sur un type de mâchefer afin de le caractériser. Ils ont montré que les seules
analyses physico-chimiques des MIOM ne sont pas suffisantes et qu’il faut aussi les coupler à
des analyses d’écotoxicité. Ces auteurs proposent de donner aux analyses physico-chimiques
et écotoxicologiques la même valeur pour la classification des MIOM comme dangereux ou
non. Par exemple, Ferrari et al. (1999) ont étudié la toxicité directe (sur matériaux solides) et
la toxicité indirecte (sur lixiviats) de différents MIOM. Cette étude leur a ainsi permis de
classer la sensibilité des différents tests d’écotoxicologie. Un des résultats a été que les
plantes terrestres sont plus sensibles à la présence de matériaux solides qu’à la présence de
lixiviats de MIOM. Par ailleurs, Ibanez et al. (2000) et Cikala et al. (2001), lors d’une étude
comparative de plusieurs mâchefers, ont montré que les analyses physico-chimiques et
écotoxicologiques n’étaient pas toujours en adéquation avec la classification des MIOM
comme dangereux ou non. Il serait donc important d’effectuer ces deux types d’analyses afin
d’évaluer le potentiel polluant et toxique des MIOM. Ceci est plus récemment confirmé par
Radetski et al. (2004) qui, lors d’une étude réalisée sur des lixiviats de mâchefers ont
démontré leur potentiel toxique à l’aide de la racine Vicia. Ces auteurs préconisent de réaliser
des tests d’écotoxicité avant toute valorisation.
3.2.7 Bilan sur les caractéristiques des MIOM
Les caractéristiques des mâchefers dépendent essentiellement de la composition des ordures
traitées, des paramètres de l’incinération et des éventuels traitements effectués en amont ou en
aval de l’incinération.
A la sortie de l’incinérateur, les mâchefers sont instables thermodynamiquement et sont
susceptibles de réagir en présence de composés tels que l’eau. Lors d’un tel contact, les
différentes réactions chimiques qui interviennent et qui contrôlent le relargage des éléments
sont essentiellement des réactions de dissolution/précipitation, des réactions de complexation,
de sorption et d’oxydoréduction.
45
Chapitre 1 : Synthèse bibliographique
Par ailleurs, les mâchefers possèdent des caractéristiques géotechniques les rapprochant des
granulats naturels, bien que plus légers. Leur réutilisation en substitution des granulats dans
les bétons, et en structure routière par exemple, peut donc être envisagée sous certaines
conditions. Les paragraphes suivants ont pour objet de discuter des différentes filières de
valorisation des mâchefers, des traitements préliminaires requis et, dans un premier temps, du
contexte réglementaire.
3.3 Le contexte réglementaire
La circulaire n° 94-IV-1 du 9 mai 1994 (Ministère de l’environnement, 1994) relative à
l’élimination des mâchefers d’incinération des résidus urbains donne les orientations pour la
gestion et l’élimination de ces déchets.
D’après cette circulaire, les mâchefers issus du four d’incinération appartiendront, en fonction
de leurs caractéristiques physiques et chimiques et de leur potentiel polluant, tel que défini
tableau 1.10, à l’une ou l’autre des catégories décrites à l’annexe III du texte de loi et
rappelées ci-dessous :
• mâchefers à faible fraction lixiviable, dits mâchefers « V » pour valorisables
directement en sortie de four.
• mâchefers intermédiaires, dits « M » pour maturables. Ceux-ci nécessitent une
maturation de 12 mois maximum, au-delà desquels ils seront soit reclassés en catégorie V,
soit éliminés en centre d’enfouissement technique de classe 2.
• mâchefers à forte fraction lixiviable, dits « S » pour stockables. Ils sont directement
éliminés en centre d’enfouissement technique de classe 2.
Taux d’imbrûlés
Fraction soluble
Hg lixiviable
Pb lixiviable
Cd lixiviable
As lixiviable
Cr6+ lixiviable
SO42- lixiviable
COD
Unités
% (massique)
% (massique)
mg/kg
mg/kg
mg/kg
mg/kg
mg/kg
mg/kg
mg/kg
Mâchefers « V »
<5
<5
< 0,2
< 10
<1
<2
< 1,5
< 10 000
< 1500
Mâchefers «M »
<5
< 10
< 0,4
< 50
<2
<4
<3
< 15 000
< 2000
Mâchefers « S »
>5
> 10
> 0,4
> 50
>2
>4
>3
> 15 000
> 2000
Tableau 1.10 : Catégories de mâchefers en fonction de leur potentiel polluant selon la circulaire
du 9 mai 1994
46
Chapitre 1 : Synthèse bibliographique
Les concentrations des éléments réglementés et décrits dans le tableau 1.10 sont obtenues par
le test de lixiviation normalisé NF X31-210 (AFNOR). Ce test comprend trois séries
d’extractions. La lixiviation se fait à l’eau distillée avec un rapport volume d’eau / masse de
solide de 1 litre pour 100 g de MIOM. La durée de mise en contact est de 16 h pour chacune
des trois extractions. La somme des concentrations relarguées à chaque lixiviation est ensuite
réalisée pour obtenir les concentrations finales de chaque élément et les comparer aux valeurs
réglementaires.
3.4 Gestion des mâchefers
3.4.1 Les Installations de Maturation et d’Elaboration des mâchefers (IME)
Les IME (ou plates-formes de maturation) sont définies dans la circulaire du 9 mai 1994
comme des Installations Classées pour la Protection de l’Environnement (ICPE) soumises à
autorisation.
Le premier intérêt des IME est de constituer des stocks de matières premières de substitution
capables « d’encaisser » les variations de flux demandés en fonction des chantiers de Travaux
Publics. Le second intérêt est d’offrir une alternative, économiquement intéressante et
respectueuse de l’environnement, aux centres d’enfouissements techniques de classe 2.
Les enjeux sont à la hauteur de la production des usines d’incinération : on comptait en 2001
une quarantaine d’IME qui traitaient plus de 2,25 millions de tonnes de mâchefers soit 70 %
de la production totale annuelle (Basuyau, 2001).
Les IME sont réparties de façon inégale : elles sont quasi-absentes en Centre-ouest et en SudEst car les filières d’incinération y sont moins développées et les granulats naturels suffisants,
ce qui rend la valorisation des MIOM moins intéressante.
Le plus souvent, les IME sont proches des UIOM. Le transport se fait par camion, sauf pour
quelques installations de la région parisienne, qui sont alimentées par voie fluviale ou ferrée.
Les plates-formes ont des capacités de traitement de 10 000 t/an à plus de 200 000 t/an, les
plus importantes étant en région parisienne.
47
Chapitre 1 : Synthèse bibliographique
3.4.2 Différents types de procédés de traitement
La conception des IME est variable, selon qu’elles sont attenantes à l’UIOM ou non. Elles
comportent en général une aire de pré-stockage, une aire de traitement, une aire de maturation
et des équipements annexes : contrôle/pesage, déferaillage, criblage, rétention des lixiviats,
atelier, laboratoire, …Un tiers des sites dispose d’une couverture partielle et seulement 10 %
d’une couverture totale (limitation de la production de lixiviats, …)(Basuyau, 2001).
Les délais de pré-stockage des mâchefers avant leur traitement mécanique varient de 0 mois
(lorsque le mâchefer est traité directement en sortie de l’extracteur de l’UIOM) à 3 mois. La
durée est le plus souvent inférieure à 1 mois. On a aussi besoin d’un délai pour l’égouttage
des mâchefers, dont l’humidité varie de 10 à 30 % en sortie d’UIOM.
Le tableau 1.11 résume, pour la France, les différents procédés de traitement et les quantités
de matières valorisables récupérées (Lac et Fourcy, 2001).
48
Chapitre 1 : Synthèse bibliographique
Type de procédé
Répartition des
installations en
nombre
Grave de mâchefer
Ferreux
Non
Ferreux
Total
valorisable
26 %
79,9 %
9,5 %
0
89,4 %
29 %
88,4 %
5,5 %
0,6 %
94,5 %
42 %
92,5 %
5,4 %
0,5 %
98,4 %
97 %
90,7 %
5,5 %
0,5 %
96,7 %
Type I - Traitement
de base : criblage et
séparation des
ferreux, pour IME <
35 000 t/an
Type II - Criblage,
séparation des
ferreux et non
ferreux, broyage des
refus, pour IME de
capacité variable
Type III - type II
séparation des
imbrûlés légers, pour
IME de capacité
variable
Globalité sur tonnage
traité
Type IV Granulométrie
élaborée par
concassage,
séparation des
ferreux et non
ferreux
Cas unique : une IME de type IV
3%
Tableau 1.11 : Différents types de procédés de traitement des mâchefers
La phase de maturation permet d’améliorer la qualité des mâchefers. Ces derniers sont stockés
de trois mois à une année sur une plate-forme couverte ou à l’air libre. Les mâchefers vont
évoluer à la suite de réactions physico-chimiques, principalement au contact de leur milieu
environnant : eau, air, …
3.4.3 La maturation
La phase de maturation est une étape clé de la valorisation des MIOM. C’est au cours de cette
phase que le potentiel polluant du mâchefer va être réduit, lui permettant la plupart du temps
de passer de la classe « M » à la classe « V ».
Les mâchefers sont des matériaux formés à très haute température et refroidis brusquement
(trempe). Ils sont donc très réactifs et instables en conditions atmosphériques. Les interactions
49
Chapitre 1 : Synthèse bibliographique
avec l’eau, l’oxygène et le dioxyde de carbone de l’air vont modifier leurs propriétés physicochimiques pendant la période de stockage.
3.4.3.1 Le processus de maturation
La maturation comprend six phases essentielles : l’extinction de la chaux vive, l’oxydation
des ferrailles, le lessivage des chlorures, la carbonatation, le relargage des sulfates et la
stabilisation des métaux (Bodenan et al., 2001 ; Meima et al., 1999).
a) Trempe à l’eau à la sortie du four avec extinction de la chaux vive :
CaO (chaux vive) + H2O→ Ca(OH)2 (portlandite)
b) Oxydation des ferrailles :
Les MIOM sont en général laissés au moins un mois à l’air libre avant déferaillage afin que
l’oxydation des ferrailles ait lieu. Cette réaction étant très exothermique, la température
augmente sensiblement et peut atteindre 70 °C à 80 °C (Bodénan et al., 2001).
c) Lessivage des chlorures :
Les sels solubles présents dans les MIOM, tels que NaCl, KCl, et CaCl2, vont se dissoudre
assez rapidement. 80 % des chlorures lessivés se retrouvent dans les lixiviats après 5 mois de
maturation. Ce lessivage n’a bien entendu pas lieu en cas de stockage couvert.
d) Carbonatation de la chaux :
La chaux vive produite dans le four puis hydrolysée en portlandite est progressivement
carbonatée par le dioxyde de carbone.
Ca(OH)2 + CO2 → CaCO3 + H2O
En ce qui concerne le CO2, le consensus scientifique admet généralement qu’il provient
essentiellement de l’air ambiant. Toutefois, cette hypothèse est actuellement remise en cause.
D’autres sources de CO2 sont envisagées, comme une éventuelle conséquence d’activité
microbiologique (Belevi et al., 1992 ; Kaibouchi, 2003).
La calcite est le principal carbonate formé et l’état de saturation par rapport à ce minéral
provoque une baisse significative du pH autour de 8. Cette carbonatation s’accompagne d’une
solubilisation des sulfates de calcium et est exothermique.
50
Chapitre 1 : Synthèse bibliographique
La carbonatation conduit également à la formation de précipités de Al(OH)3 et de précipités
aluminosilicatés. En effet, la solubilité de l’aluminium est réduite quand le pH décroît d’une
valeur supérieure à 10 à 8-8,5 (Meima et al., 1999).
e) Relargage des sulfates :
Lorsqu’un pH d’environ 8-9, est atteint suite à la carbonatation, les sulfates de calcium se
solubilisent selon les réactions suivantes :
CaSO4 (anhydrite) → Ca2+ + SO42Ca[SO4],2H2O (gypse) → Ca 2+ + SO4 2- + 2 H2O
Ca6[Al(OH)6]2(SO4)3,26H2O (ettringite) + 12 H+ →6 Ca2+ + 3 SO42- + 2 Al 3+ + 38 H2O
La quantité de gypse Ca[SO4],2H2O dans les mâchefers contrôle la quantité d’ion sulfates
SO42-. La dissolution du gypse se fait progressivement, chaque fois que le MIOM est lessivé
par l’eau de pluie. Au début de la maturation, cette réaction est limitée par les fortes
concentrations de calcium libéré. Ainsi la solubilisation des sulfates augmente avec le temps
de stockage.
D’un point de vue global, les espèces sulfatées sont dissoutes par le déplacement des
équilibres dû à la carbonatation : piégeage des ions Ca2+ issus de la chaux dissoute, et baisse
du pH, due à la consommation des ions OH- et à la précipitation de la calcite.
f) Stabilisation des métaux :
La baisse du pH induit la formation d’hydroxydes métalliques stables et insolubles
Mx+ + x H2O → M(OH)x +x H+
Le tableau 1.12 présente les diverses réactions ayant lieu lors de la maturation des MIOM et
les phases minérales néoformées qui en résultent (Zevenbergen et Comans, 1994).
51
Chapitre 1 : Synthèse bibliographique
environnement
réaction dominante
mobilité
minéralogie
ettringite
Ca-zéolithes
hydrolyse de la portlandite
saturé
formation de l’ettringite
forte : Si, Al, Na, K
sepiolite
alcalin
hydratation et hydrolyse du
faible : Ca, Mg, Fe, SO4
analcime
réducteur
verre
brucite
formation de zeolithe
ouvert
carbonatation
alcalin à neutre
hydratation et hydrolyse du
forte : Ca, Mg, SO4, Na,
dolomite
oxydant-réducteur
verre
K
argile
formation d’argile
moyenne : Si, Fe
halloysite
réactions d’oxydoréduction
faible : Al
gypse
calcite
analcime
Tableau 1.12 : Réactions dominantes et phases minérales formées lors de la maturation des
MIOM stockés à long terme
3.4.3.2 Influence de la maturation sur le comportement à la lixiviation
Le potentiel de lixiviation de MIOM maturés naturellement (jusqu’à 9 mois) a été étudié sur
des échantillons de laboratoire (Meima et Comans, 1999 ; Chimenos et al., 2000 ; Meima et
al., 2002) ou sur un tas réel de 375 tonnes (Freyssinet et al., 2002).
La maturation influe grandement sur le potentiel polluant des mâchefers car les mâchefers
maturés relarguent très peu de métaux par rapport aux mâchefers frais dans les mêmes
conditions. Les changements les plus significatifs apparaissent dans les 90 premiers jours.
Une maturation naturelle sur une période de 90 jours réduit la lixiviation des métaux lourds et
permet généralement l’utilisation des MIOM en matériau de génie civil.
D’une part, la réaction de carbonatation permet une baisse du pH et minimise ainsi la
solubilité d’un certain nombre de métaux (précipitation des hydroxydes).
D’autre part, la formation de composés insolubles comme les carbonates contrôle
l’immobilisation de certains métaux lourds comme le cadmium, le plomb et le zinc. De
même, ces éléments ainsi que le cuivre et le molybdène semblent avoir une grande affinité
pour les (hydr)oxydes de fer et d’aluminium. La lixiviation de l’aluminium augmente pendant
52
Chapitre 1 : Synthèse bibliographique
cette courte maturation du fait de l’oxydation de ce métal. La solubilité de l’aluminium est
contrôlée par la précipitation de gibbsite ou autre néoformation aluminium-sulphate.
Certains auteurs (Meima et Comans, 1999) soulignent le potentiel polluant des sulfates
relargués par les MIOM. En effet au cours de la maturation ceux-ci présentent des flux
croissants. Leur relargage est contrôlé par la solubilité du gypse qui est d’abord limitée par les
grandes concentrations de calcium. Au fur et à mesure de la carbonatation, les concentrations
en calcium chutent et la solubilité du gypse croît, ainsi que le relargage des sulfates.
3.4.4 La valorisation des mâchefers
L’utilisation des résidus issus de l’incinération (cendres volantes et mâchefers) est attrayante
pour deux raisons : elle peut permettre le ralentissement de la consommation des ressources
naturelles tout en réglant partiellement le problème de l’élimination qui se traduit souvent par
un stockage en décharge.
En 2002, en France, 76 % des MIOM étaient valorisés.
Aux Pays-Bas, environ un million de tonnes de mâchefers est produit chaque année
(Leenders, 2000). Tout le mâchefer est traité et la réutilisation avoisine les 100 %.
En Allemagne, pour une capacité d’incinération de 11 millions de tonnes par an, un taux de
valorisation des mâchefers d’environ 60 % est atteint (Méhu et Orphelin, 2001) dont la
majorité est utilisée en technique routière (couche de base) et dans les barrières (remblais)
près des autoroutes (Show et al., 2000).
Au Danemark, environ 72 % des mâchefers sont utilisés comme couches de base des
parkings, des pistes cyclables et des routes (Mehu et Orphelin, 2001).
La Suède a adopté une politique qui précise que la valorisation des MIOM améliore les
conditions environnementales générales et génère un impact moindre par rapport au stockage
en décharge (Show et al., 2000).
Aux Etats-Unis et au Canada, la mise en décharge reste le mode de gestion majoritaire des
résidus. Moins de 5 % de ceux-ci sont valorisés (Wiles, 1996).
Au Japon en 1992, 10 % des mâchefers étaient recyclés et la recherche se poursuit sur les
techniques de valorisation (Wiles, 1996).
En Corée et en Chine, seulement 10 % des déchets sont incinérés. Les cendres sont stockées
en décharges et non valorisées (Song et al., 2004 ; Min Li et al., 2004).
53
Chapitre 1 : Synthèse bibliographique
3.4.4.1. Critère de valorisation en technique routière
Les utilisations en remblais et couches de forme sont désormais courantes. En France, le
créneau privilégié qui a été validé, autant au niveau mécanique qu’environnemental.
⇒ pour l’utilisation en terrassement :
La norme NF P 11-300 définit, pour les mâchefers, une classe géotechnique désignée par le
symbole F6 (CETE Nord Picardie). A l’intérieur de cette classe, le guide technique
« Réalisation des remblais et couches de forme » répartit les mâchefers en trois sous-classes :
-
F61 : bien incinérés, criblés, déferraillés, présentant des caractéristiques chimiques
conformes aux contraintes de la circulaire du 9 mai 1994 pour la catégorie V,
stockés durant plusieurs mois.
-
F62 : mêmes caractéristiques que les mâchefers de la sous classe F61, mais de
fraîche production.
-
F63 : mal incinérés, non criblés, ou non déferraillés, ou ne présentant pas les
caractéristiques chimiques conformes aux contraintes de la circulaire du 9 mai
1994 pour la catégorie V.
L’utilisation en couche de forme est prévue par le guide technique, sous deux conditions :
-
l’appartenance à la classe F61,
-
présenter des caractéristiques géotechniques permettant d’assimiler le mâchefer à
un sol insensible à l’eau, tel que défini par la norme NF P 11-300.
⇒ pour l’utilisation en corps de chaussée :
Les mâchefers doivent satisfaire aux mêmes conditions que pour l’utilisation en couche de
forme, mais à ces conditions doivent être ajoutées des conditions de granulométrie, de
propreté et surtout de résistance mécanique (Crignon, 2004).
L’utilisation des MIOM en technique routière nécessite encore quelques adaptations de
certains essais existants ou de nouveaux essais. Les voies de recherche privilégiées sont la
prévision du risque de gonflement des chaussées dû à la réaction d’oxydation de l’aluminium
contenu dans les MIOM (Pecqueur et Crignon, 2004), et l’analyse à long terme du
comportement physico-chimique du MIOM traité par liant hydraulique (François et al., 2000 ;
François, 2001).
54
Chapitre 1 : Synthèse bibliographique
3.4.4.2 Valorisation des MIOM en matériaux de construction
a- Valorisation de MIOM par traitement aux liants hydrauliques
Des études ont montré que les MIOM pouvaient être utilisés comme matériau alternatif de
qualité moyenne dans la production de béton (Pera et al., 1997) et en remplacement d’une
partie du ciment Portland (Bertolini et al., 2004 ; Krammart et Tangtermsirihuli, 2004). Les
résultats montrent que les MIOM sont des minéraux potentiellement attractifs pour la
production de béton. Ils montrent cependant une plus faible densité, une plus forte capacité
d’absorption d’eau et une plus faible résistance que les gravats naturels. Quand ils sont
introduits directement dans le béton, il apparaît des gonflements et des fissures, dues aux
bulles d’hydrogène produites par la corrosion des particules métalliques d’aluminium. Un
traitement à l’hydroxyde de sodium est proposé pour éviter une telle dégradation (Pera et al.,
1997). Cela peut aussi être réalisé par broyage humide des MIOM afin que les réactions
développant le gaz se réalisent avant que les MIOM ne soient ajoutés au béton. Cependant, en
considérant les MIOM de différents incinérateurs, une grande variabilité a été observée dans
le temps requis pour achever la production d’hydrogène (Bertolini et al., 2004).
L’introduction des MIOM provoque une chute importante des résistances des bétons, surtout
en compression : 40 à 60 % suivant le degré de substitution (Coutaz et al., 1997).
b- Valorisation par procédé de frittage
Certaines études montrent la possibilité de fabriquer des matériaux de construction à partir
des MIOM par frittage (Kuen-Sheng et al., 1998 ; Bethanis et al., 2002 ; Cheesman et al.,
2005). Le procédé génère une sorte de céramique dont les caractéristiques dépendent de la
température et de la pression d’agglomération mais sont similaires à certains produits
commercialisés. La résistance des spécimens formés augmente avec la température
d’agglomération. Celle-ci varie entre 900 °C et 1140 °C et décroit avec l’augmentation des
imbrûlés dans les résidus d’incinération.
Des essais ont également été réalisés sur MIOM vitrifiés à 1400 °C. Le verre obtenu, mélangé
avec d’autres déchets provenant d’industries métallurgiques et minérales a été utilisé pour la
production de tuiles (Appendido et al., 2004).
3.4.4.3 Autre valorisation
D’autres modes de valorisation ont été également développés ou étudiés :
-
Sur certaines décharges, les MIOM pourraient être utilisés en prétraitement des
lixiviats (Blanchard et al., 1989), en raison de leurs propriétés adsorbantes.
55
Chapitre 1 : Synthèse bibliographique
-
Certains auteurs ont également étudiés les capacités d’adsorption des mâchefers
vis-à-vis des métaux lourds, en vue de traiter des solutions aqueuses (Shim et al.,
2003).
-
L’idée d’un procédé d’épuration du biogaz de décharge à l’aide de mâchefers à
également été développée récemment (Radu-Tirnoveanu, 2003).
4 CONCLUSION ET OBJECTIFS DE LA THESE
Etant données les quantités impliquées et les évolutions réglementaires en matière de gestion
des déchets, la valorisation des mâchefers est un problème socio-économique incontournable.
Ces matériaux ne sont plus considérés comme des résidus ultimes orientés en décharge, mais
comme des matériaux réutilisables en génie civil. Les acteurs concernés sont nombreux, et le
problème touche autant les usagers que les collectivités locales ou les entreprises publiques et
privées.
La situation idéale serait l’utilisation maximale de ce gisement renouvelable. Cette utilisation
impliquant la plus grande maîtrise possible des propriétés des MIOM, elle passe donc par une
meilleure gestion de la chaîne de traitement qui influence leurs caractéristiques intrinsèques,
ainsi que par une meilleure lisibilité du comportement à long terme de ces résidus.
L’affinement de la connaissance nécessite donc tout d’abord l’acquisition de données sur la
filière complète qui aboutit au produit final «le MIOM». En effet, le traitement des déchets
par incinération évolue au cours des années au fil de sa réglementation et de l’évolution des
technologies. Les propriétés et caractéristiques des MIOM dépendent grandement des ordures
ménagères incinérées, des paramètres d’incinération et des traitements éventuels en amont et
aval de la filière. La littérature offre de nombreuses données sur les mâchefers. Cependant,
rares sont les études reliant ces données à la filière globale de traitement des OM. Les facteurs
influant directement sur les caractéristiques physico-chimiques des mâchefers sont donc mal
connus. Le but de ce travail de thèse est donc, dans un premier temps, d’essayer d’identifier
ces paramètres.
L’évolution des mâchefers et leur comportement à long terme ont fait l’objet de nombreuses
études. Cependant la synthèse bibliographique laisse planer quelques zones d’ombre :
56
Chapitre 1 : Synthèse bibliographique
Le rôle de la matière organique résiduelle notamment, n’a été que peu identifié. Or nous
avons vu qu’elle pouvait constituer une source potentielle de réactions chimiques et
biologiques. Les conséquences de ces réactions sur l’évolution des mâchefers restent donc à
préciser.
En ce qui concerne les mécanismes de stabilisation chimique des MIOM, de nombreuses
études ont été consacrées à la maturation des mâchefers et à la réaction de carbonatation. Ces
études ont essentiellement porté sur les mécanismes de cette réaction et ses conséquences,
notamment sur la lixiviation des métaux lourds. Il serait intéressant de comprendre
maintenant quelle est l’influence des paramètres environnants (conditions de stockage, ...) sur
cette réaction, et comment peuvent se comporter des MIOM de caractéristiques physicochimique différentes.
57

Documents pareils