collaborations internationales et progrès réalisés depuis 10 ans

Transcription

collaborations internationales et progrès réalisés depuis 10 ans
Activité
Activités Internationales
Et progrè
progrès réalisé
alisés
Paul Lucchese
IPHE ILC Chairman
Directeur des Nouvelles Technologies de l’Energie au CEA
1
Annual Public funding to Hydrogen and Fuel cells
UK
Public funding 2006 : 25M€ ?
Canada
Federal Budget : 50 M€/an
States : 15 M€/an
Europe
FP2 : 8 M€
FP6 : 315 M€
JTI : 940 M€
États-unis
Fuel cell support from US Government (2008-2013)
DOE DOT DOD :
Korea
Budget R&D 2007 :
64 M€
China
72 M€ Budget for Fuel
cell vehicles
Japan
28 years Programme
(1993-2020)
Total budget: 2,4 G€
Total Hydrogen Fuel Initiative (250 M€/an)
Freedom Car Programme (100 M€/an)
Solid State Energy Conversion
Alliance (SECA) Programme (50 M€/an)
2006 : 420 M€
Hydrogen Fuel Initiative :
960 M€ (2004-2008)
Total funding 2007 : ~ 500-600 M€
Germany
2007
France
Public funding 2006 : 45 M€
ANR Pan-H : 70 M€ (2005-2008)
A2I : 67,6 M€ (project H2E, 7 year)
ADEME : ~2,5 M€ (2007)
World R&D mondiale
Public > 1 300-1400 M€/an
Private : 3,5 G€/an
Italy
Federal level : ~ 110 M€
Lânders : ~ 25 M€
R&D : 500 M€ (20062015)
Infrastructure :
1 G€ (2006-2015)
National Budget: 45 M€/an
Regional Budget: 10 M€/an
India
5 M€ (2006-2020)
R&D : 0,2 M€
Infrastructure : 4,8 M€
2
Analyse des programmes nationaux
Pays
Dépenses
publiques
nationales
Etats-Unis
600M$+ commandes
publiques $
Japon
400 M$
Allemagne
110€
Canada
50 à 70 M$
Commission
européenne
Régions et Evolution
local tendance
Depuis 2005-2007
100 M$
Financement
Et gouvernance
Plate forme nationale
des parties
prenantes
+71 %
Priorité nationale; road map
Plate forme animée DOE
Programme DOE; gouvernance
Très importante via des
commandes de
démonstrateurs
et petites séries
+20%
Road map; Pilotage national
Important programme sur piles
Stationnaires
Plate forme
25 M€
+90%
Road map
Importance Régions
Plate forme nationale;
20 M$
+30%
Road map; pilotage national
Plate forme
50M€/an (FP6)
70M€/an (FP7)
+40 %
Road map; JTI
R&D et déploiement
Plate forme HFP
Projets Phares ?
Italie
Espagne
UK
45
<20
25 ?
+25 %
?
?
France
43 M€ dont 20M€ ANR
2M€
ANR :
-60 % en 2007
-75 % en 2008 ?
A2i:
0 >>10M€/an
Plate forme
Rôle des investisseurs
privés, capital risque et AIM
UK (100M€/an ?)
Pas de road map
Plate forme HYPAC en
construction
Pas de gouvernance nationale
Grandes
Entreprises fortes
R&D France
Tissu R&D fort
(Post Grenelle ?)
Faiblesse PME
3
Next-Generation Vehicle Fuel Initiative:
~Simultaneous Achievement of Goals in Energy Security, Environmental Conservation and Increased
Competitiveness~
~
1. Biofuel
2. Clean diesel
1. Biofuel
4. Fuel cells/hydrogencells/hydrogen-fueled society
~ What is a plugplug-in hybrids vehicle?~
vehicle?~
3. NextNext-generation batteries
Bioethanol blended with gasoline, and
biodiesel blended with diesel oil
Two types of biofuel
<Bioethanol>
•-Ethanol made by fermenting sugar content of sugarcane or corn
•Cost problems and supply instability arising from securing raw materials that can also be consumed
as food
•-Medium and long-term need to develop cellulose-derived bioethanol made from scrap wood or straw
•<Biodiesel>
•-Fuel made by synthesizing vegetable oil such as rapeseed and palm oil
•-Need to develop hydrogenation technology for commercial use to prevent oxidization
(decomposition)
Cellulose-derived biofuel
Promotion of the development of cellulose-derived biofuel
made from raw materials not consumed as food
Ethanol fuel
Waste wood
・Conversion into sugar using enzymes
・Fermentation using yeast
- Clean diesel-powered vehicles are about two times more fuel-efficient than
gasoline-powered vehicles, making use of Japan’s diesel oil, which is the
cleanest in the world.
- Various other types of fuel, such as GTL fuel, can be used for clean diesel
vehicles.
Share of diesel vehicles
About 50% in Europe, almost
0% in Japan
19
90
年
19
92
年
19
94
年
19
96
年
19
98
年
20
00
年
20
02
年
20
04
年
Europe
欧州
Japan
日本
Chargin
Gasolin
g circuit
e
Buttery
engine
Development of next-generation batteries will
expand the potential of vehicles.
Home power supply
Use of electricity for daily commuting
(Significant cut of oil consumption)
Use of gasoline for long weekend drives
Next-Generation Vehicle Battery
Development Project
Budget requested for FY2006: 5 billion yen
Advanced battery
(2015)
Improved
battery (2010)
Compact electric vehicles
for business use
Innovative
battery (2030)
Compact electric
Plug-in hybrids
vehicles for family use
vehicle
Standard-sized electric
vehicle
Targeted battery
1
1.5
7
performance
Targeted
1/2
1/7
1/40
battery cost Development of next-generation batteries (improvement in battery performance)
4. Fuel cells/hydrogencells/hydrogen-fueled society
2. Clean diesel
50%
45%
40%
35%
30%
25%
20%
15%
10%
5%
0%
3. NextNext-generation batteries
Sound promotion of the development of fuel cells, which will be the key for the creation
of a hydrogen-fueled society through the transition from “carbon cycle” to “water cycle”
Hydrogen supply
Common rail system
Electronic control of fuel injection systems has
made possible cleaner gas exhaust
High-pressure
pump
Injector
Electronic
control
system Open/
close
signal
Fuel tank
* GTL: Gas-to-liquid, fuel made from natural gas
Common rail
Fuel cell vehicle
Hydrogen station
Hydrogen vehicles will play an important role in spreading the use of fuel cells
and creating a hydrogen-fueled society.
Hydrogen vehicles
- Powered by way of the combustion of hydrogen
instead of fossil fuel (e.g. gasoline)
- Producing very clean exhaust that contains almost
nothing but water
4
Deux nouveaux laboratoires au Japon
“HYDROGENIUS”
Technologies de base
sécurité de
l’Hydrogène
“FC3”
Mécanismes de base
sur les PEMFC
Catalyst
Electrolyte
Membrane
Material Transfer
at Interface
Dr. Jean-Marc Olive
University of Bordeaux I,
FRANCE
(2006.8.16~)
Dr. Veronique Doquet
Ecole Polytechnique,
FRANCE (2007~)
5
International Collaboration on Hydrogen
Advanced Fuel Cell Implementing Agreement
6
IPHE Partners
Russian
Federation
USA
Canada
Iceland
IPHE Partners’ Economy:
Japan
Republic of
Korea
China
India
United
Kingdom
• Over $35 Trillion in GDP,
85% of world GDP
• Nearly 3.5 billion people
• Over 75% of electricity used
worldwide;
• > 2/3 of CO2 emissions and
energy consumption
Australia
Brazil
Norway
European
Commission
France
Germany
Italy
New
Zealand
7
Information Dissemination:
Download free at www.ieahia.org
Production
20.
Hydrogen from Waterphotolysis
th
21.
25 Anniversary Report:BioHydrogen
In
23.
Small-Scale
Reformers for On-Site H2 Supply (SSR for H2)
Pursuit of the Future
24.
Wind Energy and H2 Integration
Luzzi / Bonadio / McCann
25.Press Club,
High Temperature Processes
for H2 Production
2006 Annual
Report
Released at the National
Washington DC, 7-Sep-04
Storage
17.
Solid & Liquid State Storage Materials
22.
Fundamental and Applied H2 Storage Materials Development
Analysis, Safety and Economics
18.
Integrated Systems
19.
Safety
Task 14 Final Report
Photoelectrolytic
Production of Hydrgoen
8
Avec cet investissement et ces
organisations:
Quels progrès ?
1- Sur la R&D
2-Sur la démonstration,
déploiement
9
Des progrès constants et spectaculaires
Depuis 2000:
-Quantité Platine divisée par 10
-Réduction très importante des coûts Plaques bipolaires
-Epaisseur des membranes divisé par 3
-Durée de vie Membranes:
-DOE: X2,5 à 3 (2000h)
-Dupont: 5000h
-Coût divisé par 10
-Atteinte objectifs coûts SOFC SECA: 400$/kW
- Capacité stockage X 2 à 3:
-350 bars et 700 bars
10
Exemple au CEA en 2007
Quantité de Pt 0,4 g/kW contre 1,2 g/kW
Solutions de rupture
- Catalyseurs Pt allié (Co, Cr,…)
- Catalyseurs non nobles
- Membranes « maison » nanostructurés ultrafines
- Oxygène pur (réduction Pt et augmentation perf.)
1200
1000
0,1 g/kW
meilleurs
industriels
800
Pmax in W/cm²
Zone de performances requises pour
les premières applications automobiles
env. 1 g/kW
Jalon
2008
GENEPAC
600
LITEN
réf. 2007
Electrodes
ELAT
(standard)
400
1,2 g/kW
Industry
Jalon
2007
< 0,4 g/kW !
LITEN
résultat 2007
200
Conditions d’essais : H2-AIR / 80°C / 1,5 bars / 50% HR
0
100,00
10,00
1,00
Charge en platine en €/kW (à 30€/gPt)
11
Stockage et production
1,5 Kw/Kg( 5,2 %)
1 kW/l system
0
50
100
150
200
250
300
350
400
Mass of storage tank (Kg)
2006-2007
CEA AL 32l 700 bar
1999
700 bar
liner
Aluminium
2004
CEA AL Ullit
22l, 350 bars
12
Des progrès spectaculaires sur les systèmes
Necar 1 (1994)
PEMFC de 50 kW (12 modules),
alimentation H2
•
Location Honda 2008
– $600/mois, Southern California
• 780 km range (Toyota)
– 2300 mile road trip, Alaska-California
• Flottes véhicules 100(GM)
– CA, NY, DC
– 1000 vehicles by 2010-2012
• 3l/100 km estimated (Daimler)
• 300 km/h record de vitesse avec zéro
émission
13
Demonstration world Atlas
•
•
•
•
Plusieurs centaines de piles vendues (Stationnaires, back up)
Plus de 100 stations services
Plus de 250 véhicules
Les projets de démonstrations passent à la deuxième génération:
–
Intégration des technologies; infrastructure durable, accès aux premiers
marchés;
14
LargeLarge-Scale Stationary Fuel Cell Demonstration Project
Provide feedback on various demonstration data, for research and development
Step up to mass production and inspection of learning curve
Price target: 1.2 million yen/system (in 2008)
Application for installation
Application
METI∙∙NEDO
Subsidy
NEF
Energy suppliers
Residences
Subsidy
Installation decision
Hokkaido
3 sites
Breakdown of installation
(FY2005)
Energy supplier
1st stage
2nd stage
Osaka Gas
Nippon Oil
+930 for FY2007
More than 2,000
Number of installation
Tokyo Gas
480
500
Japan Energy
Idemitsu
400
2nd stage
Kyushu Oil
+777 for FY2006
Taiyo Oil
Toho Gas
300
Tohoku
2 sites
Saibu Gas
Iwatani
Cosmo Oil
1st stage
200
Kinki
76 sites
Kamata (LemonGas)
Showa Shell Sekiyu
Total
In FY2005, up to 6 million yen
per stationary FC for
household is subsidized to
the energy supplier.
Web site:
http://happyfc.nef.or.jp
100
12
0
2002
31
2003
Chugoku
13 sites
33
2004
2005
Kyushu
34 sites
Shikoku
13 sites
Chubu
32 sites
Kanto
307 sites
15
Pilot Projects Initiated Worldwide
Hydrogen from hydropower
Hydrogen powered three-wheelers
Hydrogen from biomass
Hydrogen buses
Hydrogen from solar energy
Hydrogen from renewable energy
Hydrogen from wind energy
Algiers
Azores
Portugal
Romania
China
Azerbaijan
Turkey
India
Morocco Libya
Algiers
Cuba
S. Korea
Brazil
Argentina
S. Africa
16
L’Europe de la Recherche H2 Pac s’organise
Research Grouping >>> JTI
47 participants
SINTE
F
1600 R&D people
VTT
Center for Process Innovation
Univ. of Manchester
Univ. of Aalborg
Univ. of
Hertfordshire
RISØ
E
Fundation ITMA
Fundation
Cidaut
INASME
CIDETEC
T
EC
N ZBT
VITO
FZJ
Duisbourg
AVER
CUT
DLREC
E
IM Mainz
CNR
S
ZS
CEA, IFP
PSI W
INPL Poitiers
Univ.
Montpellie
CENER r 2
INTA
CIEMA
T
AIJU
Univ. of
Turin
Politecnic
Univ. of
Univ. of Turin
Alicante
NRI Rez
Joanneum
Technical Univ. of Graz
Research
CESI/
Univ. of Bologna
RICERCA
Univ. of Perugia
UNIDOICHET
CNR
ENE
A
Univ. of
Rome- la
Sapienza
Univ. of Salerno
Tubitak
CRES
17
Conclusions
• Les efforts sur H2 et Pac s’accélèrent partout et sont structurés
(national, européen, international)
• Les résultats sont là
• Les objectifs sont en vue à l’horizon 2015-2020
– Premiers marchés avant
• La France a des acteurs industriels et un bon tissu de recherche
• Reste:
– A ne pas relâcher l’effort:
• Un niveau de 80 à 100 M€/an est souhaitable pour rester dans la course
• ANR (30 M€ /an est un minimum au regard des autres pays mais aussi
autres aspects:
• Régions, systèmes démonstrations,
– Continuer l’intégration européenne pour concentrer l’effort sur les
points forts français
– A mettre en place une gouvernance R&D sur l’energie en France
– A mettre en place une plate forme réunissant les acteurs H2 pac en
France (HYPAC)
18