Cancer stem cells - J de Vos ( PDF - 3.5 Mo)

Transcription

Cancer stem cells - J de Vos ( PDF - 3.5 Mo)
CANCER STEM
CELLS : THE STEM
CELL THEORY OF
CANCER
Pr John DE VOS
Department of Cell and Tissue Engineering
Institute of Regenerative Medicine and
Biotherapies
INSERM U1040
[email protected]
CHU de
Montpellier
—  Stem cells
—  The stem cell theory of cancer
—  The leukemia model
—  Identifying cancer stem cells (CSC)?
—  Limits
—  Cancer and stem cell reprogramming (iPS)
STEM CELLS
LYON - 2014
Hierarchical organization of tissues
—  Tissues are composed of a
heterogeneous array of cells, with
a hierarchical organization :
○  during development
○  in a given tissue
—  There are differences :
○  in the degree of specialization
○  the capacity of proliferation
○  the capacity of self-renewal
Stem cell
Precursor/progenitor
(« transit amplifying cells »)
Differentiated cells
Stem cells
—  Essential features:
○  Indifferentiated cells
○  Self-renewal
○  Differentiation
○  Functional definition, a hidden property that must be
demonstrated by functional tests
Stem Cell
Progenitor
Differentiated cell
CLASSIFICATIONS
—  origin (embryonic, foetal, adult)
—  differentiation capacity
—  Differentiated cells
—  Unipotent stem cells
—  Multipotent stem cells
—  Pluripotent stem cells
Differentiation of stem cells
—  Divisions:
○  asymetrical
○  stochastic model
Divisions asymétriques
Modèle stochastique
The stem cell niche
—  Microenvironment maintains the stem cell property
—  A way to regulate stem cell numbers
Symetric division
Asymetric division
CANCER STEM CELLS
Is a tumor homogeneous?
—  Within a malignant tumor or
among the circulating cancerous
cells of a leukemia, there can be a
variety of types of cells
—  The stem cell theory of cancer
proposes that among all cancerous
cells, a few act as stem cells that
reproduce themselves and sustain
the cancer, much like normal stem
cells normally renew and sustain
our organs and tissues
http://ludwigcenter.stanford.edu/overview/theory.html
?
Cancer Stem Cells (CSC)
—  Définition:
○  théorique : cellule capable d’autorenouvellement et de recréer
une nouvelle tumeur; en théorie une CSC unique peut générer
une tumeur.
○  pratique:
—  fonctionnelle
: capable de recréer une tumeur dans la souris
immunodéprimée
—  +/- marqueurs de certaines cellules souches du tissu dont elles
sont issues
—  quels enjeux thérapeutiques?
THE LEUKEMIA
MODEL
THE LEUKEMIA MODEL
THE LEUKEMIA MODEL
—  Cellules souches hématopoïétiques normales: CD34+ CD38—  Qu’en est-il dans la leucémie ?
THE LEUKEMIA MODEL
—  Graft into the immunosuppressed mice NOD/SCID
THE LEUKEMIA MODEL
—  Graft into the immunosuppressed mice NOD/SCID
THE LEUKEMIA MODEL
—  Graft into the immunosuppressed mice NOD/SCID
THE LEUKEMIA MODEL
—  Graft into the immunosuppressed mice NOD/SCID
Sugihara et al. Int J Can 2013
IMPLICATIONS FOR
TREATMENT
Implications thérapeutiques
—  Si le concept de CSC est vérifié, cela explique
l’hétérogénéité des tumeurs et a des conséquences
thérapeutiques importantes.
☞  Peu utile de traiter une tumeur si on ne cible pas les
CSC!
☞  Big pharma : programmes de traitement des CSC
“Targeting self-renewal, an Achilles' heel of
cancer stem cells”
Cancer du colon
M. S. Wicha, “Targeting self-renewal, an Achilles' heel of cancer stem cells.,”
Nat Med, vol. 20, no. 1, pp. 14–15, Jan. 2014.
Traitement par différenciation
—  Leucémie aigüe myéloblastique 3 (LAM3)
○  Présence d’une translocation impliquant un récepteur à
l’acide rétinoïque (PML/RAR)
○  Traitement par all-trans retinoic acid (ATRA)
○  è différenciation des blastes; Leucémie aigüe de bon
pronostic
—  AML et CD44
Traitement par différenciation
R. S. Charrad, Y. Li, B. Delpech, N. Balitrand, D. Clay, C. Jasmin, C. Chomienne, and F. Smadja-Joffe, “Ligation of the CD44 adhesion molecule
reverses blockage of differentiation in human acute myeloid leukemia.,” Nat Med, vol. 5, no. 6, pp. 669–676, Jun. 1999.
IDENTIFYING CSC
IDENTIFYING AND ISOLATING CSC
Sugihara et al. Int J Can 2013
CSC MARKERS
Side population : SP
—  Hoechst 33342:
○  molécule fluorescente
○  entre dans les cellules vivantes
○  fixe l’ADN
—  Population négative : « SP » : enrichi en CS
[1]
C. Ginestier, M. H. Hur, E. Charafe-Jauffret, F. Monville, J.
Dutcher, M. Brown, J. Jacquemier, P. Viens, C. G. Kleer, S. Liu, A. Schott, D.
Hayes, D. Birnbaum, M. S. Wicha, and G. Dontu, “ALDH1 is a marker of
normal and malignant human mammary stem cells and a predictor of poor
clinical outcome.,” Stem Cell, vol. 1, no. 5, pp. 555–567, Nov. 2007.
ALDH ACTIVITY
—  ALDH : aldéhyde déshydrogénase : enzyme de détoxification
—  Les cellules ALDH + sont enrichies en cellules souches
FUNCTIONAL TESTS
LIMITS
Est-ce que les CSC sont rares?
ARE CSC RARE?
Est-ce que les CSC sont rares?
—  CSC mélanome :
○  1/1 000 000 (Nature. 2008 Jan 17;451(7176):345-9)
○  1/4 (Nature. 2008 Dec 4;456(7222):593-8)
TARGETING CSC BUT NOT SC
—  If CSC have a similar metabolism to SC, treating CSC may
target normal SC
OTHER MODELS
OTHER MODELS?
Sugihara et al. Int J Can 2013
CLONAL EVOLUTION OF AML
L. Ding, T. et al, “Clonal evolution in relapsed acute myeloid leukaemia
revealed by whole-genome sequencing.,” Nature, vol. 481, no. 7382, pp. 506–
510, Jan. 2012.
Réversibilité de la différenciation
Le modèle de la LMC
—  Leucémie myéloïde chronique
○  Phase chronique (~4 ans)
○  Phase blastique (DC en 6 mois)
Le modèle de la LMC
—  Hématopoïèse normale
Le modèle de la LMC
—  Phase chronique (~4 ans)
—  Chromosome Philadelphie : BCR/ABL
Le modèle de la LMC
—  Phase blastique (DC en 6 mois)
Le modèle de la LMC
EMBRYONIC
STEM CELLS
LYON - 2014
Can pluripotency be stabilized? :
human embryonic stem cells
D1
Blastocyst (D6)
D28
LYON - 2014
Can pluripotency be stabilized? :
human embryonic stem cells
D1
blood
Blastocyst (D6)
heart
D28
neurons
Mouse : 1981 Evans & Kaufman, Nature 292, p154
Human : 1998
Thomson,
Science, 282, p1145
LYON
- 2014
Can pluripotency be stabilized? :
human embryonic stem cells (hESC)
D1
- Special cell culture medium
- Growth factors
blood
Blastocyst (D6)
heart
D28
neurons
Mouse : 1981 Evans & Kaufman, Nature 292, p154
Human : 1998
Thomson,
Science, 282, p1145
LYON
- 2014
Induced pluripotent stem cells (iPS)
OCT4
SOX2
cMYC
KLF4
blood
2006 S Yamanaka – Nobel Price 2012
skin
heart
iPS
neurons
LYON - 2014
Reproducible
—  11 iPS cell lines
Foreskin fibroblasts
iPS
Cardiomyocytes
LYON - 2014
SKIN è HEART
J Wright – The alchimist, In Search of
the Philosophers' Stone
57
Human skin fibroblasts
iPS
Teratoma in SCID NSG
58
Muscle
Human skin fibroblasts
iPS
Cartilage
Endoderm
Teratoma in SCID NSG
59
1.  in vitro modelling of human development
2.  in vitro modelling of human genetic diseases
3.  An unlimited source of differentiated cell for
“physiological” pharmaceutical screening,
including cells with a specific genetic
background
4.  An unlimited source of cells for regenerative
medicine
5.  A mean to rejuvenate aging cells
LYON - 2014
—  Rajeunir les cellules
en sénescence
2011 Lapasset L., Milhavet O. et al. Genes & Dev
Les freins à la
reprogrammation sont
les mêmes que ceux à
la cancérisation
Les freins à la reprogrammation sont les
mêmes que ceux à la cancérisation
H. Li, M. Collado, A. Villasante, K. Strati, S. Ortega, M. Cañamero, M. A. Blasco, and M. Serrano, “The Ink4/Arf locus is a barrier for iPS cell
reprogramming,” Nature, vol. 460, no. 7259, pp. 1136–1139, Aug. 2009.
Les freins à la reprogrammation sont les
mêmes que ceux à la cancérisation
R. M. Marión, K. Strati, H. Li, M. Murga, R. Blanco, S. Ortega, O. Fernandez-Capetillo, M. Serrano, and M. A. Blasco, “A p53-mediated DNA damage
response limits reprogramming to ensure iPS cell genomic integrity,” Nature, vol. 460, no. 7259, pp. 1149–1153, Aug. 2009.
Les freins à la reprogrammation sont les
mêmes que ceux à la cancérisation
CONCLUSION
—  High stakes
—  Difficult to formally prove the CSC theory
Bibliographie
—  Clevers H, Nat Med. 2011 Mar;17(3):313-9. The cancer stem cell:
premises, promises and challenges.
—  Hanahan D, Weinberg RA. Cell. 2011 Mar 4;144(5):646-74. Hallmarks
of cancer: the next generation.
—  Morrison SJ, Kimble J. Nature. 2006 Jun 29;441(7097):1068-74.
Asymmetric and symmetric stem-cell divisions in development and
cancer.
—  Sugihara E, Saya H. Int J Cancer. 2013 Mar 15;132(6):1249-59.
Complexity of cancer stem cells.
—  C. Willyard, “Stem cells: bad seeds.,” Nature, vol. 498, no. 7455, pp.
S12–3, Jun. 2013.