The VENTEEA project testing Li-ion battery integration

Transcription

The VENTEEA project testing Li-ion battery integration
Venteea
A Smart Grid demonstrator for
the DRES integration on the MV
distribution networks
www.venteea.fr/en/
Lille, le 26 novembre 2015
Agenda
•
Project overarching objectives
•
The consortium
•
The added value of the involved grid connected L’éolien
représente
storage options
aujourd’hui
•
The new knowledge gained so far
•
The main lessons learnt
•
The next project steps
•
Needs for future R&I activities coming out of
the project (if any !)
•
Deployment prospects of the most promising
solutions
8,1 GW
Le PV
représente
aujourd’hui
4,5 GW
2
Agenda
•
Project overarching objectives
•
The consortium
•
The added value of the involved grid connected L’éolien
représente
storage options
aujourd’hui
•
The new knowledge gained so far
•
The main lessons learnt
•
The next project steps
•
Needs for future R&I activities coming out of
the project
•
Deployment prospects of the most promising
solutions
8,1 GW
Le PV
représente
aujourd’hui
4,5 GW
3
VENTEEA location and figures
VENTEEA is a project focused on the integration of large wind
generation within MV distribution networks.
•
•
•
In France, more than 95% of the renewable energy
generation is connected to the distribution network
The project takes place in the Champagne region,
France’s area with the highest amount of wind
generation
VENTEEA is supported by the French Agency for the
Environment and Energy Management (ADEME)
Validé DIR
Key facts and figures:
• 1 existing wind farm 12 MW (dedicated MV feeder)
• 1 existing wind farm 6 MW (non dedicated MV
feeder with 1500 customers)
• 1 HV/MV transformer (63/20 kV - 20 MVA)
• 130 secondary substations
• 3200 customers (6 MV feeders)
4
VENTEEA description
Data exchange between DSO
and RES
Fault Protection
Indicator
Li Ion Storage
2 MVA – 1.3MWh
Voltage and power
sensors for network
real time diagnosis
L’éolien
représente
aujourd’hui
8,1 GW
MV network state
estimator
Le PV
représente
aujourd’hui
4,5 GW
OLTC
Transformers
Numerical Command and
control system evolution
5
Focus on Voltage experiments
•
MV Distribution State Estimator (DSE)
•
Volt VAr Control Experimentation
L’éolien
représente
aujourd’hui
8,1 GW
Le PV
représente
aujourd’hui
4,5 GW
6
ERDF DSE experimental layout
New Primary
SS supervision
& control
Concept
Rethel Control
Centre
New RTUs
Vendeuvre/Barse
Primary SS
IP +x25
ERDF SCADA
(SITR)
« internally
developed »
Existing RTUs
L’éolien Innovative
représente Voltage
aujourd’hui sensors
Rogowski sensor
8,1 GW
V.BAR30
IP (APN
SFR GPRS)
IEC 104
4 Remote
controlled
devices (RCD)
4 RCD
Le PV
représente
aujourd’hui
4,5 GW
EBoralex Plant
NOURET
(12MW)
3 RCD
DEIE
Boralex Plant
LE NOYER
(6MW)
2 RCD
DSE Voltage
function
validation
Sensors
7
ERDF DSE experimental layout
Rethel
Control
Centre
4 voltage sensors are enough to obtain
a satisfactory DSE voltage accuracy
P & Q 3%
10 min average
measurement
IP +x25
Synchronous
New RTUs
Vendeuvre/Barse
Primary SS
IP (APN
SFR
GPRS)
Rogowski Coil
IEC 104
V 1%
10 min average
measurement
Synchronous
V.BAR30
ERDF SCADA
(SITR)« in
house
developped »
New Primary
SS supervision
& control
Concept
Existing RTUs
Innovative
Voltage
sensors
Rogowski sensor
L’éolien
V 0.5% on busbar
représente
10mn average
aujourd’hui
4 Remote
measurement
8,1 GW
controlled
Synchronous
devices (RCD)
4 RCD
ENEL G. Plant
NOURET
(12MW)
Le PV
3 RCD
représente
aujourd’hui
4,5 GW
Nexans V Sensor Class
0.5
2 RCD
DEIE
ENEL G Plant
LE NOYER
(6MW)
VVC function
validation
Sensors
8
Focus on Voltage expériments
•
MV Distribution State Estimator (DSE)
•
Volt VAr Control Experimentation
L’éolien
représente
aujourd’hui
8,1 GW
Le PV
représente
aujourd’hui
4,5 GW
9
Volt Var Control Expériment
Increase DER hosting capacity of the existing MV networks via real time
software tools (centralised VVC function + local DER regulation)
MV Voltage
mastering in real time (in
DER presence) via a
centralized algorithm
copped with a DER local
regulation
MV
2015
Experimentation
1 - Local DER regulation (Q= f(V))
with dead band required by ERDF
-
L’éolien
représente
regulationaujourd’hui
8,1 GW
2 - Centralised Voltage
in ERDF Control Centres 2
functions:
observability (State
Estimation) & voltage Control via
set
point
value
of
OLTC
transformer at Primary Substation
Le PV
représente
aujourd’hui
4,5 GW
P
G
Tan φ
Voltage
Centralized
Vmax
Voltage
Regulation
via set point Vmin
DER Local Voltage
regulation
(Q= f(U))
Length
10
Agenda
•
Project overarching objectives
•
The consortium
•
The added value of the involved grid connected L’éolien
représente
storage options
aujourd’hui
•
The new knowledge gained so far
•
The main lessons learnt
•
The next project steps
•
Needs for future R&I activities coming out of
the project
•
Deployment prospects of the most promising
solutions
8,1 GW
Le PV
représente
aujourd’hui
4,5 GW
11
VENTEEA, a team and a leader, ERDF
23,4 M€
3.5 years until mild-2016
12
Partners / objects
Data exchange between DSO
and RES
Fault Protection
Indicator
Li Ion Storage
2 MVA – 1.3MWh
Voltage and power
sensors for network
real time diagnosis
L’éolien
représente
aujourd’hui
8,1 GW
MV network state
estimator
Le PV
représente
aujourd’hui
4,5 GW
OLTC
Transformers
Numerical Command and
control system evolution
13
Agenda
•
Project overarching objectives
•
The consortium
•
The added value of the involved grid connected L’éolien
représente
storage options
aujourd’hui
•
The new knowledge gained so far
•
The main lessons learnt
•
The next project steps
•
Needs for future R&I activities coming out of
the project
•
Deployment prospects of the most promising
solutions
8,1 GW
Le PV
représente
aujourd’hui
4,5 GW
14
Storage location
An exceptional testing site in terms of storage services
12 MW wind farm
connected to the
dedicated feeder
6 MW wind farm
connected to feeder
with customers
L’éolien
représente
aujourd’hui
8,1 GW
Le PV
représente
aujourd’hui
4,5 GW
6MW wind farm
(feeder with loads)
12MW wind farm
(dedicated feeder )
15
Storage grid services
An exceptional testing site in terms of storage services
•
•
Focus of the VENTEEA storage demonstration: aggregation of several services
for several stakeholders (TSO, DSO and wind farm operator)
Possibility to switch between 2 connection points → a strong increase in the
service offers that can be considered
L’éolien
TSO
DSO
DG/RES
représente
End-Users
aujourd’hui
8,1 GW
CUS1: peak
shaving
TSO1: frequency control
DSO0: main substation UPS
TSO1i : frequency stability
DSO1: capacity support
DG2: fluctuation smoothing
CUS2: time-of-use optimization
TSO2: voltage control
DSO2: local voltage control
DG3: curtailed energy reduction
CUS3: unnoticed DR support
TSO3: loss minimization
DSO3: Contingency grid support
DG4: time shifting
TS04: congestion relief
DSO4: intentional islanding
DG5: capacity firming
TSO5: angular stability
DSO5: reactive power support
DG6: micro grid balancing
CUS4: power
Le PVquality (user)
représente
CUS5: aujourd’hui
end-user UPS
4,5 GW
CUS6: power quality (DSO)
DSO6: loss minimization
DG1: ancillary services support
CUS7: reactive power support
DSO7: power quality (users)
Not feasible in VENTEEA
Storage owner
ARB: energy arbitrage
DSO8: power quality (TSO)
Not considered in VENTEEA
DSO9: TSO fees optimization
Dedicated feeder mainly
Feeder with customer mainly
16
Storage architecture
2 MW/1.3 MWh lithium-ion battery  the optimal
tradeoff between costs and demonstration capabilities
(2 MW / 30 minutes down to 0.5 MW / 2 hours)
Storage Master Controller
On Site
(network support functions, PCS management,
etc.)
Load
forecast
Generation
forecast
Requests
from
stakeholder
s (DSO, TSO,
etc.)
Market
prices
Saft Batteries
IM+20 M containers
Schneider Electric
PCS container 1
2 x XC540-ESS inverters
Schneider Electric
PCS container 2
1 MW / 650 kWh
2 x XC540-ESS inverters
PCS auxiliaries
Measures
(P,Q,f,V)
MV Substation
1 MW / 650 kWh
Computation of
grid constraints
Storage Scheduler
(Day-ahead to hour-ahead
optimization)
Remote control
Battery auxiliaries
17
17
On site installation
18
Storage: from sketches to reality
VL41M cells
ESSU
pack
SYNERION 24M modules
2 Wind farms
Connecting point
SAFT
Storage
Schneider
ES Box
Storage
Connecting
point
19
Agenda
•
Project overarching objectives
•
The consortium
•
The added value of the involved grid connected L’éolien
représente
storage options
aujourd’hui
•
The new knowledge gained so far
•
The main lessons learnt
•
The next project steps
•
Needs for future R&I activities coming out of
the project
•
Deployment prospects of the most promising
solutions
8,1 GW
Le PV
représente
aujourd’hui
4,5 GW
20
Knowledge gained so far
 Storage
 Remote system is operational
 Single services are on going on the grid with real
wind production and consumers consumption
 Validation of algorhythms
 Primary frequency control is validated by TSO
21
Primary frequency control
Example: 2 MW @ +/-50 mHz
ESS response to
decreased
frequency
ESS response to increased
frequency
22
Maintaining grid voltage limits
Q(U) control, -1 Mvar @ 21 kV
Grid voltage (kV)
21.5
21
20.5
Without storage (estimated)
With storage (measured)
5
10
15
500
20
Measured data
Theoretical Q(U) characteristic
500
0
-500
-1000
-1500
0
5
10
ESS reactive power (kvar)
ESS reactive power (kvar)
20
0
15
Time (hours)
0
-500
20
-1000
-1500
20.5
20.6
20.7
20.8
20.9
21
21.1
21.2
Grid voltage (kV)
23
Smoothing wind power output
Storage + 12 MW wind farm
Power (kW)
4000
3000
Without storage
With storage
2000
1000
0
0
0.1
0.2
0.3
0.4
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
0.5
0.6
0.7
0.8
0.9
1
ESS Active power (kW)
1000
500
0
-500
-1000
-1500
0
Time (hours)
24
Agenda
•
Project overarching objectives
•
The consortium
•
The added value of the involved grid connected L’éolien
représente
storage options
aujourd’hui
•
The new knowledge gained so far
•
The main lessons learnt
•
The next project steps
•
Needs for future R&I activities coming out of
the project
•
Deployment prospects of the most promising
solutions
8,1 GW
Le PV
représente
aujourd’hui
4,5 GW
25
The main lessons learnt
 Administrative autorisation is not yet described in
regulatory framework.
 Storage couldn’t be owned by the DSO in France
regulatory framework
 Speaking efficiency is not easy with a storage
 No business case compared to the needs of ERDF
26
Agenda
•
Project overarching objectives
•
The consortium
•
The added value of the involved grid connected L’éolien
représente
storage options
aujourd’hui
•
The new knowledge gained so far
•
The main lessons learnt
•
The next project steps
•
Needs for future R&I activities coming out of
the project
•
Deployment prospects of the most promising
solutions
8,1 GW
Le PV
représente
aujourd’hui
4,5 GW
27
Next steps
 Multi services and multi actors will be tested at
the beginning of 2016
 Islanded microgrid will be aslo tested
 Economic approch of services
 Storage impact on quality of supply
28
Agenda
•
Project overarching objectives
•
The consortium
•
The added value of the involved grid connected L’éolien
représente
storage options
aujourd’hui
•
The new knowledge gained so far
•
The main lessons learnt
•
The next project steps
•
Needs for future R&I activities coming out of
the project
•
Deployment prospects of the most promising
solutions
8,1 GW
Le PV
représente
aujourd’hui
4,5 GW
29
Needs for future R&I
 Integration of storage in distribution network
planning tools (stochastic approach)
 Comparison of various storage technologies (which
technology for which service ?)
30
Agenda
•
Project overarching objectives
•
The consortium
•
The added value of the involved grid connected L’éolien
représente
storage options
aujourd’hui
•
The new knowledge gained so far
•
The main lessons learnt
•
The next project steps
•
Needs for future R&I activities coming out of
the project
•
Deployment prospects of the most promising
solutions
8,1 GW
Le PV
représente
aujourd’hui
4,5 GW
31
Most promising solutions
 New digital control command in primary substation
 Distributed state estimator
 Local DER regulation (Q= f(V))
 Input from IGREENGrid project ?
32
IGREENGrid
ERDF uses VENTEEA results to contribute to the IGREENGrid European project
IGREENGrid project focuses on identifying the most promising solutions for
increasing the hosting capacity for Distributed Renewable Energy Sources (DRES) in
power distribution grids without compromising the reliability or jeopardizing the
quality of supply
The most important results of the project will be:
–Recommendations for the integration of DRES in distribution grids.
–Technical requirements to DRES, equipment manufacturers & technology
providers.
–Assessment of the scalability and replicability at EU level (from technical,
regulatory and economic point of view).
Total budget: 6,6 M€ (Budget ERDF = 645 k€)
Coordinator : IBERDROLA
Web site: www.igreengrid-fp7.eu
Duration : 3.5 years
33
IGREENGrid
8 partners and 6 demonstrators
34
Q&A
35
Thanks for your
attention!!
36

Documents pareils