AP Calculus AB Chapter 6 Worksheet

Transcription

AP Calculus AB Chapter 6 Worksheet
bnAP Calculus AB Chapter 6 Worksheet
1. Find each antiderivative:
Name:SOLUTIONS
11x5  5 x 2
x11/ 2
x5/ 2
9/ 2
3/ 2
(a) 
dx   11x  5 x dx  11
5
C
11/ 2
5/ 2
x
1
1
(b)  7 dx  7 x  C

(c)
(d)
sec2 (3x)
dx
1  tan(3x)



csc
1
u  1  tan(3x); du  3sec 2  3x  dx; du  sec 2  3x  dx
3
2
sec (3x)
1 1/ 2
1 u1/ 2 2
1/ 2
dx

u
du


 1  tan(3x)   C
 1  tan(3x)

3
3 1/ 2 3
 x  cot  x  dx u 
x

(e)
e1/ x
 x 2 dx
csc
x ; du 
1 1/ 2
1
x dx; 2du 
dx
2
x
 x  cot  x  dx  2
x
 csc u cot udu  2csc u  2csc
u  1/ x; du  1/ x 2 dx; du 
1
dx;
x2
e1/ x
u
u
1/ x
 x2 dx   e du  e  e  C
(f)
x
(g)

x 1
dx
 2x
2
cos(2ln( x))
dx
x
1
u  x 2  2 x; du   2 x  2  dx; du   x  1 dx
2
x 1
1 du 1
1
2
 x2  2x dx  2  u  2 ln u  2 ln x  2 x  C
2
1
1
dx; du  dx
x
2
x
cos(2ln( x))
1
1
1
dx   cos udu  sin u  sin  2ln x   C

x
2
2
2
u  2ln x; du 
x C
2. Evaluate each integral
(a)
1
1
1
0
0
0
2x
2x
 10e  4dx   10e dx   4dx
For the first integral, let u  2 x;
We have
1
 10e
0
2x
(b)
du
1
 2; du  dx
dx
2
1
10eu du  5eu  ee2 x , so
2
dx   4dx   5e  4 x   5e  4  5
1
0
2x
1
2
0
1
 5 dx hint:
x
0
5x  e x ln5
du
1
 ln 5e x ln 5dx;
du  e x ln 5dx
dx
ln 5
1
1 u
1 x ln 5 5x
u
We have
e
du

e

e 
ln 5 
ln 5
ln 5
ln 5
u  e x ln 5 ;
1
5x
5 1

So  5 dx 
0
ln 5 0 ln 5
1
x
3
1 tan ( x)
1
du
1
(c)  sin( x)dx . Let u   x;
(d) 
dx

tan 3 ( x)sec2 ( x)dx .
  ; du  dx
2

1/ 2
3/
4
3/
4
dx

cos ( x)
1
1
1
du
1
We have  sin udu   cos u   cos  x
u  tan  x  ;
  sec2  x  ; du  sec 2  x  dx



dx

1
1
1
1
1 3
1 u4
1
So  sin( x)dx   cos  x     1  0 
We have  u du   
tan 4  x 
1/ 2

 4 4


1/ 2
1
So

3. Sketch a slope field for the differential equation

1
3/ 4
tan 3 ( x)sec2 ( x)dx 
1
1
 0  1 
4
4
dy x
 on the axes below.
dx 4
1
1
tan 4 ( x)
3/ 4
4

Documents pareils

Integral Formulas 1. ∫ u du = 1 n + 1 u + c if n

Integral Formulas 1. ∫ u du = 1 n + 1 u + c if n (c) Write down the 3rd Taylor polynomial P3(x) , for xe−2x , at a = 0 .

Plus en détail

MATH 141 Fundamental Theorem of Calculus (FTC) Let f : [a, b] → R

MATH 141 Fundamental Theorem of Calculus (FTC) Let f : [a, b] → R If the functions y = f (x) and y = g(x) are differentiable at x and a and b are constants, then: 1. Dx [af (x) + bg(x)] = af 0 (x) + bg 0 (x) 2. Dx [f (x) · g(x)] = f 0 (x) · g(x) + f (x) · g 0 (x)

Plus en détail

Recall from Math 141 Integration Basics Fundamental Theorem of

Recall from Math 141 Integration Basics Fundamental Theorem of If f is differentiable at x and g is differentiable at f (x), then: (4) Dx [g(f (x))] = g 0 (f (x)) f 0 (x) . On this handout, a (∗) means that you do not have to memorize the formula but should be...

Plus en détail

Calculus I Integration: A Very Short Summary Definition

Calculus I Integration: A Very Short Summary Definition + C for r 6= −1 r+1 Z Z du = u−1 du = ln |u| + C for r = −1 u Z au au du = +C ln a Z eu du = eu + C Z cos u du = sin u + C Z sin u du = − cos u + C Z sec2 u du = tan u + C Z sec u tan u du = sec u ...

Plus en détail

Calculus Tables

Calculus Tables If an integrand has the form f (u(x))u (x), then rewrite the entire integral in terms of u and its differential du = u (x) d x:

Plus en détail