Développements en séries entières usuels

Commentaires

Transcription

Développements en séries entières usuels
Formulaire PanaMaths (CPGE)
Développements en séries entières usuels
Fonction
Développement en série entière
(DSE)
Intervalle de
validité du DSE
+∞
xn
x 2 x3
= 1 + x + + + ...
∑
2 6
n=0 n !
\
x 6 chx
x2n
x2 x4
x6
=
1
+
+
+
+ ...
∑
2 24 720
n = 0 ( 2n ) !
\
x 6 shx
x 2 n +1
x3 x5
x7
x
=
+
+
+
+ ...
∑
6 120 5040
n = 0 ( 2 n + 1) !
\
x6e
x
+∞
+∞
( −1) x 2 n = 1 − x 2 + x 4 − x 6 + ...
∑
2 24 720
( 2n ) !
n =0
n
+∞
( −1) x 2 n+1 = x − x3 + x5 − x 7 + ...
∑
6 120 5040
n = 0 ( 2n + 1) !
n
+∞
x 6 cos x
x 6 sin x
x 6 (1 + x )
α
Où α ∈ \
1
1− x
1
x6
1 − x2
1
x6
1+ x
1
x6
1 + x2
+∞
α (α − 1)(α − 2 ) ... (α − ( n − 1) )
n =1
n!
1+ ∑
+∞
∑x
x6
x6
x6
1
1 − x2
1
1 + x2
PanaMaths
xn
= 1 + x 2 + x 4 + x 6 + ...
]−1; +1[
x n = 1 − x + x 2 − x3 + ...
]−1; +1[
x 2 n = 1 − x 2 + x 4 − x 6 + ...
]−1; +1[
2n
n =0
∑ ( −1)
n
n =0
+∞
∑ ( −1)
n
]−1; +1[
]−1; +1[
+∞
+∞
\
= 1 + x + x 2 + x3 + ...
n
n =0
∑x
\
n =0
( 2n )! x 2 n = 1 + x 2 + 3x 4 + 5 x 6 + ...
∑
2
2n
2
8
16
n = 0 2 ( n !)
n
+∞
( −1) ( 2n )! x 2 n = 1 − x 2 + 3x 4 − 5 x 6 + ...
∑
2
2n
2
8
16
n = 0 2 ( n !)
+∞
[1-2]
]−1; +1[
]−1; +1[
Janvier 2010
+∞
x 6 ln (1 − x )
xn
x 2 x3 x 4
= − x − − − − ...
2 3 4
n
]−1; +1[
x 2 n +1
x3 x5 x 7
=
1
+
+ + + ...
∑
3 5 7
n = 0 2n + 1
]−1; +1[
−∑
n =1
+∞
x 6 arg tanh x
+∞
x 6 ln (1 + x )
∑
( −1)
n
n =1
+∞
∑ ( −1)
x 6 arctan x
n =0
n +1
n
xn
= x−
x 2 x3 x 4
+ − + ...
2 3 4
x 2 n +1
x3 x5 x 7
= x − + − + ...
2n + 1
3 5 7
( 2n )! x 2 n+1 = x + x3 + 3x5 + 5 x 7 + ...
2
2n
6 40 112
n=0
( n !) 2n + 1
x3 3 x5
π +∞ ( 2n ) ! x 2 n +1 π
−∑
= −x− −
− ...
2 n =0 22 n ( n !)2 2n + 1 2
6 40
n
+∞
( −1) ( 2n )! x 2 n+1 = x − x3 + 3x5 − 5 x 7 + ...
∑
2
2n
2n + 1
6 40 112
n = 0 2 ( n !)
+∞
x 6 arcsin x
x 6 arccos x
x 6 arg sinh x
PanaMaths
∑2
[2-2]
]−1; +1[
]−1; +1[
]−1; +1[
]−1; +1[
]−1; +1[
Janvier 2010

Documents pareils

DERIVATIVES AND INTEGRALS

DERIVATIVES AND INTEGRALS DERIVATIVES AND INTEGRALS Basic Differentiation Rules

Plus en détail

Diff and Integ Rules Final

Diff and Integ Rules Final  csc u cot u du   csc u  C  tan u du  ln sec u  C   ln cos u  C  cot u du   ln csc u  C  ln sin u  C  sec u du  ln sec u  tan u  C   ln sec u  tan u  C  csc u du   ln csc...

Plus en détail