Common Derivatives and Integrals

Transcription

Common Derivatives and Integrals
Common Derivatives and Integrals
Derivatives
Basic Properties/Formulas/Rules
d
( cf ( x ) ) = cf ¢ ( x ) , c is any constant. ( f ( x ) ± g ( x ) )¢ = f ¢ ( x ) ± g ¢ ( x )
dx
d n
d
x ) = nx n-1 , n is any number.
( c ) = 0 , c is any constant.
(
dx
dx
æ f ö¢ f ¢ g - f g ¢
– (Quotient Rule)
( f g )¢ = f ¢ g + f g ¢ – (Product Rule) ç ÷ =
g2
ègø
d
f ( g ( x ) ) = f ¢ ( g ( x ) ) g ¢ ( x ) (Chain Rule)
dx
g¢ ( x)
d
d g ( x)
g x
ln g ( x ) ) =
e
= g¢( x) e ( )
(
dx
g ( x)
dx
(
)
( )
Common Derivatives
Polynomials
d
d
(c) = 0
( x) = 1
dx
dx
d
( cx ) = c
dx
Trig Functions
d
( sin x ) = cos x
dx
d
( sec x ) = sec x tan x
dx
d
( cos x ) = - sin x
dx
d
( csc x ) = - csc x cot x
dx
d
( tan x ) = sec2 x
dx
d
( cot x ) = - csc2 x
dx
Inverse Trig Functions
d
1
sin -1 x ) =
(
dx
1 - x2
d
1
sec -1 x ) =
(
dx
x x2 - 1
d
1
cos -1 x ) = (
dx
1 - x2
d
1
csc -1 x ) = (
dx
x x2 -1
d
1
tan -1 x ) =
(
dx
1 + x2
d
1
cot -1 x ) = (
dx
1 + x2
d n
( x ) = nxn-1
dx
d
( cx n ) = ncxn-1
dx
Exponential/Logarithm Functions
d x
d x
a ) = a x ln ( a )
e ) = ex
(
(
dx
dx
d
1
d
1
ln ( x ) ) = , x > 0
ln x ) = , x ¹ 0
(
(
dx
x
dx
x
d
1
log a ( x ) ) =
, x>0
(
dx
x ln a
Hyperbolic Trig Functions
d
( sinh x ) = cosh x
dx
d
( sech x ) = - sech x tanh x
dx
d
( tanh x ) = sech 2 x
dx
d
( coth x ) = - csch 2 x
dx
d
( cosh x ) = sinh x
dx
d
( csch x ) = - csch x coth x
dx
Visit http://tutorial.math.lamar.edu for a complete set of Calculus I & II notes.
© 2005 Paul Dawkins
Common Derivatives and Integrals
Integrals
Basic Properties/Formulas/Rules
ò cf ( x ) dx = c ò f ( x ) dx , c is a constant.
ò f ( x ) ± g ( x ) dx = ò f ( x ) dx ± ò g ( x ) dx
b
b
ò a f ( x ) dx = F ( x ) a = F ( b ) - F ( a ) where F ( x ) = ò f ( x ) dx
b
òa
b
cf ( x ) dx = c ò f ( x ) dx , c is a constant.
a
a
òa
òa
b
b
a
a
f ( x ) ± g ( x ) dx = ò f ( x ) dx ± ò g ( x ) dx
b
ò a f ( x ) dx = 0
b
b
a
ò a f ( x ) dx = -òb f ( x ) dx
c
b
a
c
b
f ( x ) dx = ò f ( x ) dx + ò f ( x ) dx
If f ( x ) ³ 0 on a £ x £ b then
ò a c dx = c ( b - a )
b
ò a f ( x ) dx ³ 0
If f ( x ) ³ g ( x ) on a £ x £ b then
b
òa
b
f ( x ) dx ³ ò g ( x ) dx
a
Common Integrals
Polynomials
1
ò dx = x + c
ò k dx = k x + c
ò x dx = n + 1 x
ó 1 dx = ln x + c
ô
õx
òx
òx
-1
n
dx = ln x + c
p
ó 1 dx = 1 ln ax + b + c
ô
õ ax + b
a
q
ò x dx =
-n
dx =
n +1
+ c, n ¹ -1
1
x - n +1 + c, n ¹ 1
-n + 1
p
q
1 q +1
x +c =
x
p
p+q
q +1
Trig Functions
ò cos u du = sin u + c
p+q
q
+c
ò sin u du = - cos u + c
ò sec u du = tan u + c
ò sec u tan u du = sec u + c ò csc u cot udu = - csc u + c ò csc u du = - cot u + c
ò tan u du = ln sec u + c
ò cot u du = ln sin u + c
1
ò sec u du = ln sec u + tan u + c
ò sec u du = 2 ( sec u tan u + ln sec u + tan u ) + c
2
2
3
ò csc u du = ln csc u - cot u + c
ò csc
3
u du =
1
( - csc u cot u + ln csc u - cot u ) + c
2
Exponential/Logarithm Functions
òe
u
du = e + c
u
au
ò a du = ln a + c
u
e au
( a sin ( bu ) - b cos ( bu ) ) + c
a2 + b2
eau
au
e
cos
bu
du
=
(
)
( a cos ( bu ) + b sin ( bu ) ) + c
ò
a 2 + b2
au
ò e sin ( bu ) du =
Visit http://tutorial.math.lamar.edu for a complete set of Calculus I & II notes.
ò ln u du = u ln ( u ) - u + c
ò ue du = ( u - 1) e
u
u
+c
ó 1 du = ln ln u + c
ô
õ u ln u
© 2005 Paul Dawkins
Common Derivatives and Integrals
Inverse Trig Functions
1
ó
æuö
du = sin -1 ç ÷ + c
ô
èaø
õ a2 - u2
ò sin
1
ó 1
æuö
du = tan -1 ç ÷ + c
ô 2
2
a
õ a +u
èaø
1
1
ó
æuö
du = sec -1 ç ÷ + c
ô
2
2
a
èaø
õ u u -a
Hyperbolic Trig Functions
ò sinh u du = cosh u + c
ò sech tanh u du = - sech u + c
ò tanh u du = ln ( cosh u ) + c
-1
ò tan
u du = u sin -1 u + 1 - u 2 + c
1
u du = u tan -1 u - ln (1 + u 2 ) + c
2
-1
ò cos
-1
u du = u cos -1 u - 1 - u 2 + c
ò cosh u du = sinh u + c
ò sech
ò csch coth u du = - csch u + c ò csch
ò sech u du = tan sinh u + c
Miscellaneous
ó 1 du = 1 ln u + a + c
ô 2
õ a - u2
2a u - a
ò
2au - u 2 du =
ò
2
u du = - coth u + c
ó 1 du = 1 ln u - a + c
ô 2
õ u - a2
2a u + a
ò
ò
u du = tanh u + c
-1
u 2
a2
2
a + u du =
a + u + ln u + a 2 + u 2 + c
2
2
u 2
a2
u 2 - a 2 du =
u - a 2 - ln u + u 2 - a 2 + c
2
2
u 2
a2
æuö
a 2 - u 2 du =
a - u 2 + sin -1 ç ÷ + c
2
2
èaø
2
2
2
u-a
a2
æ a -u ö
2au - u 2 + cos -1 ç
÷+c
2
2
è a ø
Standard Integration Techniques
Note that all but the first one of these tend to be taught in a Calculus II class.
u Substitution
ò a f ( g ( x ) ) g ¢ ( x ) dx then the substitution u = g ( x ) will convert this into the
b
g (b)
integral, ò f ( g ( x ) ) g ¢ ( x ) dx = ò
f ( u ) du .
a
g (a)
Given
b
Integration by Parts
The standard formulas for integration by parts are,
ò udv = uv - ò vdu
b
òa
b
b
udv = uv a - ò vdu
a
Choose u and dv and then compute du by differentiating u and compute v by using the
fact that v = ò dv .
Visit http://tutorial.math.lamar.edu for a complete set of Calculus I & II notes.
© 2005 Paul Dawkins
Common Derivatives and Integrals
Trig Substitutions
If the integral contains the following root use the given substitution and formula.
a
a2 - b2 x2
x = sin q
Þ
and
cos 2 q = 1 - sin 2 q
b
a
b2 x2 - a2
Þ
x = sec q
and
tan 2 q = sec2 q - 1
b
a
a2 + b2 x2
Þ
x = tan q
and
sec 2 q = 1 + tan 2 q
b
Partial Fractions
ó P ( x)
dx where the degree (largest exponent) of P ( x ) is smaller than the
If integrating ô
õ Q ( x)
degree of Q ( x ) then factor the denominator as completely as possible and find the partial
fraction decomposition of the rational expression. Integrate the partial fraction
decomposition (P.F.D.). For each factor in the denominator we get term(s) in the
decomposition according to the following table.
Factor in Q ( x )
Term in P.F.D Factor in Q ( x )
ax + b
A
ax + b
( ax + b )
ax 2 + bx + c
Ax + B
2
ax + bx + c
( ax2 + bx + c )
Term in P.F.D
Ak
A1
A2
+
+L +
2
k
ax + b ( ax + b )
( ax + b )
k
Ak x + Bk
A1 x + B1
+L +
k
2
ax + bx + c
( ax 2 + bx + c )
k
Products and (some) Quotients of Trig Functions
n
m
ò sin x cos x dx
1. If n is odd. Strip one sine out and convert the remaining sines to cosines using
sin 2 x = 1 - cos 2 x , then use the substitution u = cos x
2. If m is odd. Strip one cosine out and convert the remaining cosines to sines
using cos 2 x = 1 - sin 2 x , then use the substitution u = sin x
3. If n and m are both odd. Use either 1. or 2.
4. If n and m are both even. Use double angle formula for sine and/or half angle
formulas to reduce the integral into a form that can be integrated.
n
m
ò tan x sec x dx
1. If n is odd. Strip one tangent and one secant out and convert the remaining
tangents to secants using tan 2 x = sec 2 x - 1 , then use the substitution u = sec x
2. If m is even. Strip two secants out and convert the remaining secants to tangents
using sec2 x = 1 + tan 2 x , then use the substitution u = tan x
3. If n is odd and m is even. Use either 1. or 2.
4. If n is even and m is odd. Each integral will be dealt with differently.
Convert Example : cos 6 x = ( cos 2 x ) = (1 - sin 2 x )
3
3
Visit http://tutorial.math.lamar.edu for a complete set of Calculus I & II notes.
© 2005 Paul Dawkins

Documents pareils

Algebra Geometry - Stewart Calculus

Algebra Geometry - Stewart Calculus 109. y sech u du  tanh u  C 110. y csch u du  coth u  C 111. y sech u tanh u du  sech u  C 112. y csch u coth u du  csch u  C

Plus en détail

Calculus Tables

Calculus Tables sec3 u du = sec u tan u + ln |sec u + tan u| + C

Plus en détail

DERIVATIVES AND INTEGRALS

DERIVATIVES AND INTEGRALS DERIVATIVES AND INTEGRALS Basic Differentiation Rules

Plus en détail

Recall from Math 141 Integration Basics Fundamental Theorem of

Recall from Math 141 Integration Basics Fundamental Theorem of (3) Dx fg(x) = f (x) · g(x)[g(x)] provided g(x) 6= 0 .

Plus en détail

A tutorial calculus for factorial analysis

A tutorial calculus for factorial analysis (b) Dans l’onglet ”Quality, Mass, Inertia” des résultats des lignes, on voit que la colonne INERTIA indique que la région LOIR (pays de la Loire) explique 18.35% de l’inertie totale. Exprimez kXk...

Plus en détail