Comment on “Active coastal thrusting and folding

Transcription

Comment on “Active coastal thrusting and folding
Tectonophysics 601 (2013) 236–244
Contents lists available at SciVerse ScienceDirect
Tectonophysics
journal homepage: www.elsevier.com/locate/tecto
Comment
Comment on “Active coastal thrusting and folding, and uplift rate of the Sahel
Anticline and Zemmouri earthquake area (Tell Atlas, Algeria)”, by S. Maouche,
M. Meghraoui, C. Morhange, S. Belabbes, Y. Bouhadad, H. Haddoum.
[Tectonophysics, 2011, 509, 69–80]
K. Pedoja a,⁎, H. Djellit b, C. Authemayou c, J. Deverchere c, P. Strzerzynski d, A. Heddar b,
M. Nexer a, A. Boudiaf e
a
Laboratoire de Morphodynamique Continentale et Côtière, CNRS, Université de Caen, 14000 Caen, France
CCRAAG entre de Recherche en Astronomie Astrophysique et Géophysique, Route de l'Observatoir Bp 63 Bouzareah, Alger, Algeria
Université de Brest (UBO), UMR 6538 Domaines Océaniques, 29238 Plouzané, France
d
Laboratoire de Géologie, Bâtiment des Sciences naturelles Faculté des Sciences et Technique, Université De Maine 1 Avenue O. Messiaen 72000 Le Mans, Cedex 09, France
e
Consultant Géologue, Spécialiste des Risques, 42 rue du Moulin à Vent, 34200 Sète, France
b
c
a r t i c l e
i n f o
Article history:
Received 2 July 2012
Received in revised form 27 August 2012
Accepted 28 August 2012
Available online 2 October 2012
Keywords:
Marine terrace
Coastal tectonic
Algeria
Uplift
a b s t r a c t
Based on geomorphologic analyses and leveling survey of Quaternary coastal indicators (i.e. marine terraces
and notches) along of a 50-km-long coastal stretch of the Algerian coast west of Algiers, Maouche et al.
(2011) interpret the coastal segment to have undergone high uplift rates, i.e. 0.84–1.19 mm/yr since last interglacial maximum (MIS 5e, 122 ± 6 ka in Table 1, ~ 140 ka in Maouche et al., 2011) and ~ 2.5 mm/yr for the
last 31 ka. This uplift was said to be due to repeated seismic events that would have occurred during the last
~ 140 ka, and more particularly during the late Pleistocene.
We raise major issues about the interpretation proposed by Maouche et al. (2011). These issues deal with 1)
the use of previous chronological data and the chronostratigraphy proposed, 2) processes involved in the creation of coastal staircase morphology on the coast west of Algiers, 3) anomalously high uplift rates compared
to other available data on the same geomorphic features (marine terraces) in the same setting of reactivated
passive margins, and 4) the fold geometry used for modeling of fold growth and its implications for coseismic
surface deformation and uplift estimates.
In other words, we contest the statements that coseismic deformation is the cause of staircase morphology on
the Mediterranean coast west of Algiers and that very large (M > 7) earthquakes have occurred there in the
past.
© 2012 Elsevier B.V. All rights reserved.
1. Introduction
Maouche et al. (2011) propose a rather provocative interpretation
for the recent tectonic history of the Algerian coast around Algiers.
According to their statements, this coastal segment experienced
high uplift rates, mainly due to repeated seismic events that would
have occurred during the last ~ 140 ka, and more particularly in the
last 31 ka. In other words, according to these authors, the active
tectonics of this region is associated with large shallow earthquakes
(M ≥ 6.5), numerous thrust faults and surface fault-related folds.
⁎ Corresponding author. Tel.: +33 2 31 56 57 17.
E-mail address: [email protected] (K. Pedoja).
0040-1951/$ – see front matter © 2012 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.tecto.2012.08.043
Here, we raise issues concerning the following: 1) erroneous use
of previous and original chronological data and the consequent
morpho-chrono-stratigraphical interpretation that results into unrealistic regional uplift rates; 2) processes invoked to create the coastal
staircase morphology west of Algiers (i.e. strong coseismic component); 3) the questionable interpretation proposed in this article
(Maouche et al., 2011) when compared to other studies on coastal
deformation for this re-activated passive margin (see Pedoja et al.
(2011) and Table 1 for synthesis), 4) the use of a poorly constrained
data on fold geometry that has an impact on the coseismic uplift estimates. These considerations lead us to question the unrealistically
elevated uplift rates proposed by Maouche et al. (2011) and their
coseismic hypothesis for the origin of uplift in the coastal area
around Algiers.
K. Pedoja et al. / Tectonophysics 601 (2013) 236–244
2. Use of previous and new chronological data and
chrono-stratigraphy proposed
Our major issue with Maouche et al. (2011) concerns the use of
chronological data, both with the re-use of some dates and with their
interpretation of 14C dates. Based on these dates, Maouche et al.
(2011) postulate that the upper marine terrace (T1) of the Sahel anticline has been carved out during the last interglacial maximum
highstand (MIS 5e, 122 ka) and that the lower terraces (T6 and T7)
are respectively 30 and 14 ka. Due to the erroneous chronostratigraphic
interpretation, Maouche et al. (2011) calculate a very high uplift rate
(0.84–1.2 mm/yr), which has a major impact on earthquake magnitude
estimates. Also, this uplift rate is not discussed with respect to previously published uplift rates of 0.13 and 0.11 mm/yr (Table 1; Meghraoui et
al., 1996; Morel and Meghraoui, 1996) based on some of the same data.
Most of Maouche et al.'s (2011) interpretation relies on a two U/Th
date on seashells taken in coastal deposits around Tipaza and
performed by Stearns and Thurber (1965). Maouche et al. (2011) use
the dates to correlate the shoreline angle of the upper terrace of the
sequence (T1) describe at 175–185 m, a correlation we contest for the
following reasons. In the original article, Stearns and Thurber (1965)
present a short description of the outcrop where the samples (two for
the Algerian coast, respectively L-779A and L-779B in their study)
were taken. For the first sample, L-779A-A, they propose a correlation
of the narrow marine terrace (i.e. bench) where the sample was taken
to what is called “basse plage quaternaire” (low Quaternary beachdeposits) by French-speaking authors (Dalloni, 1949 in Saoudi, 1989;
Lamothe, 1911 in Saoudi, 1989; Vita-Finzi, 1967). The second sample,
L-779B, was taken in the mouth of the Oued Rhiran, midway between
Bérard and Tipaza. This means that the samples were taken in low Quaternary beach-deposits and certainly not in deposits of a marine terrace
raised at 175–185 m. The methods yielded ages of 140 ± 10 (L-779a)
and 125± 10 ka (L-779B). “Classical interpretation” (e.g. Saoudi,
1989; Vita-Finzi, 1967) of this date suggest the occurrence of last interglacial maximum paleoshoreline (MIS 5e) at altitudes below 10 m
above mean sea-level (~6 m as suggested in Saoudi (1989). Note that
well-developed low standing terrace was observed during field work
by members of our team). Please also note that this classical interpretation was formerly accepted by some of the co-authors of Maouche et al.
(2011) (e.g. Meghraoui et al., 1996; Morel and Meghraoui, 1996) but
this is not mentioned or discussed in Maouche et al. (2011).
In their paper, Maouche et al. (2011) also propose a compilation of
14
C dates obtained in the zone (supplementary materials 1) to which
they add new dates. Our concerns are twofold. First, Maouche et al.
(2011) regard old ages (> 30 ka) as relevant whereas such data are
generally dismissed by other authors working on the same morphologies in other parts of the world because too close to the limit of the
method (e.g. Pedoja et al., 2006). Second, Maouche et al. (2011) consider ages obtained on charcoal, which is often found as a consequence of anthropogenic use of the land. Without clearly showing
that human occupation was coeval with formation (carving) of the
preserved paleocoast (e.g. marine terrace), one can only interpret
such an age as a minimum value. Consequently, T7 and T6 ages are
probably older than those stated by Maouche et al. (2011).
Based on their age assignments for T1 and T7, the intermediate
marine terraces (T6–T2) thus have been correlated with other relatively high sea-stands between 120 ka and 30 ka (Figure 6 of
Maouche et al., 2011). However, these relatively high sea-stands (between − 60 m and − 80 m for MIS 3, see Siddal et al., 2006) are not
recorded as emerged paleocoasts except for sequences located on tectonically active (subduction, collision) coastlines with uplift rates
commonly >1.5 mm/yr, such as the Mahia Peninsula in New Zealand
(Berryman, 1992, 1993a,b); on the Huon Peninsula in Papua New
Guinea (e.g. Chappell, 1974); in Vanuatu archipelago (Cabioch and
Ayliffe, 2001; Galipaud and Pineda, 1998; Jouannic et al., 1980,
1982; Taylor et al., 1980, 1982, 1985, 1987); and in the Ryukyus
237
archipelago (Ikeda et al., 1991; Ikeya and Ohmura, 1983; Inagaki
and Omura, 2006; Konishi et al., 1970 ; Maejima et al., 2005 ; Ota
and Omura, 1992; Sasaki et al., 2004).
Maouche et al. (2011) also make a mistaken correlation
concerning the T4 marine terrace (their Figure 6), which does not
have the same high sea-level correlation in Profile P1compared with
Profiles P2 and P3. We also note that the authors did not include
any sea-level correction (see Figure 6) nor discuss the apparent
absence, in their interpretation, of the globally frequently preserved
MIS 5a terrace (see Pedoja et al., 2011).
3. Process involved in the creation of staircase morphology on the
Algerian coast west and east of Algiers: coseismic versus
interseismic uplift
We disagree with Maouche et al.'s (2011) interpretation that the
sequence of marine terraces on the Sahel anticline was uplifted
through coseismic uplift, with our argument based on the misapplied
chronology, as discussed above, and on timing and geomorphology.
Typically, and in our suggested alternative interpretation, a broad
staircase topography of coastal marine terraces such as present on
the Sahel anticline would be associated with Quaternary sea-level
fluctuations and more particularly interglacial periods (stage and
substage) superimposed on a rising coastline, producing a classic
marine-terrace sequence (Lajoie, 1986). The summit (oldest) of
such sequences can be found at altitudes of a few hundred meters
and several kilometers inland. The height differences between adjacent paleocoasts are generally > 10 m (see Figure 4A in Pedoja et al.
(2011) for a cross section of such sequences).
The sequence of marine terraces located on the Sahel area describe
and interpreted by Maouche et al. (2011) is developed over a
50-km-long stretch of coast between Ain Benian and Tipaza and locally
reaches more than 3.5 km inland (see Figure 4B in Maouche et al.,
2011). The landscape is characterized by widespread development of
a low sequence of four marine terraces superceded by wide, compound
marine surfaces called “rasa” that can be wider than 2 km (e.g. Saoudi,
1989). The scale of the Algerian marine terrace sequence fits the classic
glacioeustatic model and does not fit with the worldwide observation
on the size of coseismic sequence of coastal indicators.
Whereas Maouche et al. (2011) ascribe terraces as old as ~140 ka
and up to 200 m in elevation as co-seismically generated, elsewhere
coseismic coastal uplift has been described only for the Holocene
epoch and generally only for the later Holocene since glacioeustatically
driven sea level slowed and reached approximately its present level ~5–
6 ka. Documented cases of coseismic uplift describe staircase topography reaching only a few tens of meters altitude at most: e.g., ~30 m in
Oiso Bay, Japan (Ota, 1980, 1985) and in northern California (Merritts
and Bull, 1989; Merritts et al., 1991) and extending at most b 1 km inland; the height difference between each step is usually on the scale
of 3–5 m. The ages and elevation of the these co-seismically generated
steps are not consistent with eustatic sea-level change (Ota and
Yamaguchi, 2004), as Maouche et al. (2011) seem to indicate in their
case (their Figure 4).
4. Uplift rate comparison along the North African margin: why a
major anomaly along the Sahel coast?
If major co-seismic events had occurred during the last 140 ka in
Algeria or nearby, as proposed by Maouche et al. (2011), additional
sequences of repeated uplifts similar in age should be present and
identified west and east of the study area. Moreover, the interpretation by Maouche et al. (2011) produces a 10 times faster uplift rates
than what was described before by some of the same co-authors of
this article (Meghraoui et al., 1996; Morel and Meghraoui, 1996).
This change in interpretation should be at least mentioned in
Maouche et al. (2011), if not discussed.
238
Table 1
Altitude of MIS 5e coastal indicators and consequent uplift rates. C: cape, SSC: straight segment of coast, I: island, M: mixed, B: bay, E.E.: “en échelon”, BD: beach deposits, MT: marine terrace. Uplift rates* = uplift rates given by authors. Uplift
rates** = uplift calculated using eustatic correction (3 ± 1 m as in Siddal et al., 2006) and uplift rates*** = uplift rates calculated without eustatic correction. Modified and updated from Pedoja et al. (2011). Dating methods: AA: amino acid
racemization, U/Th: uranium–thorium decay, OSL: optically stimulated luminescence, TL: thermoluminescence, 14C: 14 carbon.
Number Ocean
and/or
1
2
3
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
Mediterranean Lybia
Tunisia
Lat 1
Lon 1
Lat2
31°54′
0.00″N
33°09′
57.98″N
33°16′
38.10″N
33°38′N
15°20′
60.00″E
11°33′
28.13″E
11°17′
41.65″E
11°E
31°54′
0.00″N
33°09′
57.98″N
33°16′
38.10″N
33°31′N
33°53′
44.42″N
33°38′
15.49°N
34°39′N
35°29′N
36°01′N
36°29′
45.59″N
36°50′
13.31″N
37°03′N
10°49′
18.74″E
10°29′
44.26″E
11°01′E
11°02′E
10°30′E
10°49′
6.61″E
11°06′
20.25″E
10°54′32″
E
10°33′E
10°04′
06.59″E
8°59′4.64″
E
2°54′7.62″
E
2°41′0.46″
E
2°34′
21.33″E
2°27′0.15″
E
2°24′6.81″
E
0°18′
41.61″W
1°10′
50.15″W
2°57′
25.59″O
3° 0′8.39″
W
33°38′
02.67″N
33°39′
16.66″N
34°39′N
35°29′N
36°01′N
36°29′
45.59″N
36°27′
28.84″N
37°03′N
36°46′N
37°16′
07.01″N
37° 6′
9.13″N
Algeria
36°47′
53.12″N
36°38′
40.75″N
36°35′
40.48″N
36°35′
29.00″N
36°37′
56.48″N
35°51′
30.79″N
35°34′
29.78″N
Morocco 35°21′
6.95″N
35°24′
40.13″N
36°46′N
37°16′
07.01″N
37°6′
9.13″N
36°47′
53.12″N
36°38′
40.75″N
36°35′
40.48″N
36°35′
29.00″N
36°37′
56.48″N
35°51′
30.79″N
35°34′
29.78″N
35°21′
6.95″N
35°21′
28.58″N
Lon2
15°20′
60.00″E
11°33′
28.13″E
11°17′
41.65″E
10°53′44″
E
10°53′
02.90″E
10°33′
59.66″E
11°01′E
11°02′E
10°30′E
10°49′
6.61″E
10°48′
36.33″E
10°54′32″
E
10°33′E
10°04′
06.59″E
8°59′4.64″
E
2°54′7.62″
E
2°41′0.46″
E
2°34′
21.33″E
2°27′0.15″
E
2°24′6.81″
E
0°18′
41.61″W
1°10′
50.15″W
2°57′
25.59″O
2°58′7.48″
W
Geography Name
Maximum
Minimum No. of
palaeo-shoreline altitude
coastal
of sequence
length
(km)
Data on MIS 5e
palaeoshoreline
Data on MIS 5e
MoE Nature
Max
elevation
(m)
Eustasy MoE Age MoE
(m)
(ka)
C
West Lybia
*
>1
*
8
2
BD
3
1
122
6
C
Allouet el Gounna
6
>1
*
4
1
BD
3
1
122
6
SSC
Bhiret al Bibane
20
>1
*
0
1
BD
3
1
122
6
C
12
>1
*
6
1
BD
3
1
122
6
I
North Cape of Zarzis
Peninsula
Jerba Island
115
>1
*
5
1
BD
3
1
122
6
M
South East Gulf of Gabes
7.5
>1
*
3.5
1
BD
3
1
122
6
I
C
C
SSC
Malitah
Mahdia
Sahel/Al Mahadhibah
Sidi Jabroun
*
*
*
*
>1
>1
>1
>1
*
*
*
*
4
13
32
40
1
1
1
1
BD
BD
BD
MT
3
3
3
3
1
1
1
1
122
122
122
122
6
6
6
6
SSC
50
>1
*
13
1
BD
3
1
122
6
C
East Cape Bon between
Kelibia and Nabeul
Sidi Da'ud
*
>1
*
7
1
BD
3
1
122
6
B
C
Tunis
El Metline
*
*
>1
>1
*
*
7
10
1
1
BD
BD
3
3
1
1
122
122
6
6
C
Cape Negro
*
1
6
5
1
BD
3
1
122
6
C
Aïn Benian
4
3
150
30
1
MT
3
1
122
6
SSC
Bou Ismail
4
3
150
1
1
MT
3
1
122
6
B
Rocher plat
*
>1
*
22
1
MT
3
1
122
6
B
Tipaza
*
>1
*
20
1
MT
3
1
122
6
C
Ras El Amouch
*
3
150
20
1
MT
3
1
122
6
C
Arzew
*
>1
*
38
1
MT
3
1
122
6
C
Figalo
*
>1
*
45
1
MT
3
1
122
6
M
North Melilla
*
>1
*
3
1
MT
3
1
122
6
C
Cap des trois fourches
18
1
6
6
1
MT
3
1
122
6
C
Punta Negri
5
3
65
6
1
MT
3
1
122
6
K. Pedoja et al. / Tectonophysics 601 (2013) 236–244
4
Country
and/or
26
27
28
29a
29b
30
31
32
33
34
36
37
38
39
40
41
42
43
44
45
46
47a
47b
48
49
3° 8′
24.76″W
3°19′
54.75″W
3°27′
10.80″W
3°46′3.67″
W
3°55′
43.47″W
3°55′
43.47″W
5° 8′
57.55″W
5°14′1.51″
O
5°21′5.94″
O
5°24′8.23″
W
5°28′
51.07″O
5°35′4.33″
W
5°43′9.26″
W
5°56′
19.42″W
6° 2′
18.35″O
6°10′
15.24″W
6°47′
14.06″W
7°26′
25.27″W
8°44′
11.38″W
9°53′
18.79″O
9°51′
37.94″O
9°41′2.37″
O
9°40′
24.44″O
9°39′
15.24″O
9°41′
24.22″W
9°54′
55.87″O
11°31′
26.19″W
35°16′
22.74″N
35°13′
2.91″N
35°12′
6.10″N
35°13′
12.19″N
35°15′
17.74″N
35°15′
17.74″N
35°29′
42.98″N
35°32′
48.45″N
35°52′
5.65″N
35°55′
2.50″N
35°54′
23.28″N
35°49′
47.59″N
35°49′
47.04″N
35°45′
35.45″N
35°27′
48.14″N
35°11′
16.48″N
34°5′
16.58″N
33°31′
45.34″N
32°58′
22.77″N
30°37′
49.35″N
30°37′
24.65″N
30°30′
14.60″N
30°28′
49.55″N
30°26′
56.80″N
30°25′
22.06″N
29°22′
30.13″N
25°54′
18.99″N
3°6′49.86″
W
3°12′
55.19″W
3°27′
10.80″W
3°33′
34.35″W
3°55′
43.47″W
3°55′
43.47″W
5°8′57.55″
W
5°14′1.51″
O
5°21′5.94″
O
5°24′8.23″
W
5°28′
51.07″O
5°35′4.33″
W
5°43′9.26″
W
5°56′
19.42″W
6°2′18.35″
O
6°10′
15.24″W
6°47′
14.06″W
7°49′
33.34″W
8°44′
11.38″W
9°53′
18.79″O
9°51′
37.94″O
9°41′2.37″
O
9°40′
24.44″O
9°39′
15.24″O
9°37′
33.70″W
10°10′
40.72″O
14°28′
10.33″W
palaeo-shoreline altitude
of sequence
palaeoshoreline
MoE Nature
Max
elevation
(m)
Eustasy MoE Age MoE
(m)
(ka)
SSC
Sidi Mekhfi
13
4
150
6
1
MT
3
1
122
6
C
Afraou Point
5
4
145
8
1
MT
3
1
122
6
C
Ras Tarf
18
4
170
10.5
1
MT
3
1
122
6
P
Al Hoceima
*
>1
*
0
1
BD
3
1
122
6
P
Al Hoceima
*
3
55
5
1
MT
3
1
122
6
E.E.
North of Oued Laou
*
>1
*
6
1
MT
3
1
122
6
B
Azla
*
>1
*
3
1
MT
3
1
122
6
B
South Ceuta
*
>1
*
7
1
MT
3
1
122
6
C
Djebel Moussa/Ras Leona
*
6
115
8
2
MT
3
1
122
6
C
Punta Ceres
*
>1
*
13
1
MT
3
1
122
6
M
Ksar es Srhir
*
>1
*
20
1
MT
3
1
122
6
C
Talaa Cherif
*
3
95
15
1
MT
3
1
122
6
C
Cape Spartel
0.65
>1
5
5
1
MT
3
1
122
6
C
Assilah
*
>1
*
3
1
MT
3
1
122
6
SSC
Larache
*
>1
*
9
1
BD
3
1
122
6
SSC
Sidi Moussa
*
3
*
4.5
1
1
122
6
E.E.
Casablanca
50
4
55
2
2
BD/
3
sea-cave
MT
3
1
122
6
SSC
Oualidia
*
>1
*
6.5
1.5
BD
3
1
122
6
C
Cap Ghir
*
>1
*
4
1
MT
3
1
122
6
C
Imi Ifrane
*
>1
*
6.5
1
MT
3
1
122
6
SSC
Tamghart
*
>1
*
6
1
MT
3
1
122
6
SSC
Bouzellou
*
>1
*
3.5
1
MT
3
1
122
6
C
Agadir N
17
9
360
8
1
MT
3
1
122
6
C
Agadir N
*
>1
*
28
1
MT
3
1
122
6
SSC
Tiznit-Sidi Ifnit
60
8
130
5
1
MT
3
1
122
6
M
Western Sahara 1–3
340
4
50
6.5
1.5
MT
3
1
122
6
K. Pedoja et al. / Tectonophysics 601 (2013) 236–244
35
Atlantic
35°16′
14.38″N
35°11′
29.12″N
35°12′
6.10″N
35°14′
51.97″N
35°15′
17.74″N
35°15′
17.74″N
35°29′
42.98″N
35°32′
48.45″N
35°52′
5.65″N
35°55′
2.50″N
35°54′
23.28″N
35°49′
47.59″N
35°49′
47.04″N
35°45′
35.45″N
35°27′
48.14″N
35°11′
16.48″N
34° 5′
16.58″N
33°40′
49.45″N
32°58′
22.77″N
30°37′
49.35″N
30°37′
24.65″N
30°30′
14.60″N
30°28′
49.55″N
30°26′
56.80″N
30°31′
24.32″N
29°43′
10.02″N
28°17′
3.55″N
coastal
length
(km)
(continued on next page)
239
240
Table 1 (continued)
Number Chronostratigraphy Uplift rates
Uplift rates*
Uplift rates**
Rates Error
rate
Rates
Inferred max
duration of
registration
Uplift rates without
eustasy***
MoE Max
rate
Min
rate
Rates MoE Max
rate
Dating method
Dating performed
on
Reference
Confidence
on data
AA/U/Th/OSL/14C/
Malacology
Shells, sands…
Stombus bubonius
and Shells
Stombus bubonius
and Shells
Sand/Stombus
bubonius and Shells
Ferranti et al., 2006
Bouaziz et al., 2003;
Jedoui et al., 2001, 2003
Bouaziz et al., 2003;
Jedoui et al., 2001, 2003
Bouaziz et al., 2003;
Jedoui et al., 2001, 2003;
Mauz et al., 2009
Bouaziz et al., 2003;
Jedoui et al., 2001, 2003
Bouaziz et al., 2003;
Jedoui et al., 2003
Bouaziz et al., 2003
3
4
Bernat et al., 1985;
Bouaziz et al., 2003;
Mauz et al., 2009
Bouaziz et al., 2003;
Cornu et al., 1993;
McLaren and Rowe, 1996;
Wood, 1994
Chakroun et al., 2009;
Elmejdoub and Jedoui, 2009
Bouaziz et al., 2003;
Chakroun et al., 2009
Bouaziz et al., 2003;
Mauz et al., 2009
Bouaziz et al., 2003
2
Bouaziz et al., 2003; Mauz et al., 2009
3
Miossec, 1977
Saoudi, 1989; Vita-Finzi, 1967
Saoudi, 1989; Vita-Finzi, 1967
Meghraoui et al., 1996;
Morel and Meghraoui, 1996
Meghraoui et al., 1996;
Morel and Meghraoui, 1996;
Stearns and Thurber, 1965
Saoudi, 1989; Vita-Finzi, 1967
Meghraoui et al., 1996;
Morel and Meghraoui, 1996
1
3
3
3
Min
rate
MIS 5e
MIS 5e
*
*
*
*
0.04
0.02
0.01 0.02
0.07
0.04
0.07
0.02 −0.01 0.03
0.02
0.01
0.08
0.04
3
MIS 5e
*
*
−0.02 0.02
−0.01 −0.04 0.00
0.01
0.01
−0.01 *
4
MIS 5e
*
*
0.02 0.02
0.04
0.01 0.05
0.01
0.06
0.04 *
OSL/malacology
5
MIS 5e
*
*
0.02 0.02
0.03
0.00 0.04
0.01
0.05
0.03 *
Malacology
6
MIS 5e
*
*
0.00 0.02
0.02 −0.01 0.03
0.01
0.04
0.02 *
Malacology
7
MIS 5e
*
*
0.01 0.02
0.02 −0.01 0.03
0.01
0.04
0.02 *
Malacology
8
MIS 5e
*
*
0.08 0.02
0.10
0.07 0.11
0.01
0.12
0.10 *
OSL/malacology/U/Th
9
MIS 5e
*
*
0.24 0.02
0.26
0.22 0.26
0.02
0.28
0.25 *
Malacology/U/Th
10
MIS 5e
*
*
0.30 0.02
0.33
0.28 0.33
0.02
0.35
0.31 MIS 11/13
11
MIS 5e
*
*
0.08 0.02
0.10
0.07 0.11
0.01
0.12
0.10 *
12
MIS 5e
*
*
0.03 0.02
0.05
0.02 0.06
0.01
0.07
0.05 *
13
MIS 5e
*
*
0.03 0.02
0.05
0.02 0.06
0.01
0.07
0.05 *
14
MIS 5e
*
*
0.06 0.02
0.07
0.04 0.08
0.01
0.09
0.07 *
15
16
17
18
MIS 5
Holocene, MIS 5
MIS 5e
MIS 5e
*
*
*
0.13
*
*
*
*
0.03
0.00 0.04
0.24
0.20 0.25
0.00 −0.03 0.01
0.17
0.14 0.18
0.01
0.01
0.01
0.01
0.05
0.26
0.02
0.19
0.03
0.23
0.00
0.17
Morpho-stratigraphy/ Stombus bubonius
malacology
and Shells
Malacology
Stombus bubonius
and Shells
OSL/malacology
Sand/Stombus
bubonius and Shells
Malacology
Stombus bubonius
and Shells
OSL/malacology
Sand/Stombus
bubonius and Shells
Morpho-stratigraphy Shells
Morpho-stratigraphy Shells
Morpho-stratigraphy Shells
Malacology
Shells
19
MIS 5e
0.11
*
0.14 0.02
0.16
0.12 0.16
0.01
0.18
0.15 Late Pliocene
U/Th
Shells
20
21
Holocene, MIS 5
MIS 5e
*
0.25
*
*
0.14 0.02
0.29 0.02
0.16
0.31
0.12 0.16
0.27 0.31
0.01
0.02
0.18
0.33
0.15 Late Pliocene
0.29 Late Pliocene
Morpho-stratigraphy
Malacology
Shells
Shells
0.02
0.22
−0.02
0.16
0.02
0.02
0.02
0.02
0.05 MIS 5e
0.02 *
*
Late Pliocene
Late Pliocene
Late Pliocene
Malacology
Stombus bubonius
and Shells
Stombus bubonius
and Shells
Stombus bubonius
and Shells
Sand/Stombus
bubonius and Shells
Stombus bubonius
and Shells
4
4
4
4
2
2
2
2
3
2
3
3
2
K. Pedoja et al. / Tectonophysics 601 (2013) 236–244
1
2
Uplift rates*
Uplift rates**
Rates Error
rate
Rates
MIS 5e
0.31
*
23
24
25
26
27
28
29a
29b
30
MIS 5
MIS 5
MIS 5
MIS 5
MIS 5
MIS 5
MIS 5e
MIS 5
MIS 5
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
31
32
33
MIS 5
MIS 5
MIS 5
*
34
35
36
37
MIS 5
MIS 5
MIS 5
MIS 5
38
39
MoE Max
rate
0.34 0.02
Rates MoE Max
rate
0.32 0.37
0.02
0.39
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02 −0.02 0.02
0.04
0.01 0.05
0.04
0.01 0.05
0.04
0.01 0.05
0.06
0.02 0.07
0.08
0.04 0.09
−0.01 −0.04 0.00
0.03
0.00 0.04
0.04
0.01 0.05
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.03
0.06
0.06
0.06
0.07
0.10
0.01
0.05
0.06
*
0.00 0.02
0.03 0.02
0.04 0.02
0.02 −0.02 0.02
0.05
0.02 0.06
0.07
0.02 0.07
0.01
0.01
0.02
*
*
*
*
*
*
0.08
0.14
0.10
0.02
0.10
0.16
0.12
0.03
0.11
0.16
0.12
0.04
MIS 5
MIS 5e
*
*
0.00 0.02
0.05 0.02
40
MIS 5e
*
*
0.01 0.02
41
MIS 5, 7, 9
*
*
−0.01 0.02
42
43
44
45
46
47a
MIS 5e
MIS 5e
MIS 5e
MIS 5e
MIS 5e
MIS 5e
*
*
*
*
*
*
*
*
*
*
*
*
0.03
0.01
0.03
0.02
0.00
0.04
47b
MIS 5a, e, 7
0.14
0.050
48
49
MIS 6
MIS 5
*
*
Min
rate
Malacology
Shells
*
*
*
*
*
*
*
U/Th/malacology
U/Th/malacology
U/Th/malacology
U/Th/malacology
U/Th/malacology
U/Th/malacology
U/Th/malacology
U/Th/malacology
U/Th/malacology
Shells
Shells
Shells
Shells
Shells
Shells
Shells
Shells
Shells
0.03
0.07
0.08
0.02 *
0.05 *
0.05 *
U/Th/malacology
U/Th/malacology
U/Th/malacology
Shells
Shells
Shells/Travertine
0.01
0.01
0.01
0.01
0.12
0.18
0.13
0.05
0.10
0.15
0.11
0.03
*
*
*
*
U/Th/malacology
U/Th/malacology
U/Th/malacology
U/Th/malacology
Shells
Shells
Shells
Shells
0.02 −0.02 0.02
0.07
0.03 0.07
0.01
0.01
0.03
0.08
0.02 *
0.06 *
U/Th/malacology
U/Th
Shells
Shells
0.03
0.00 0.04
0.01
0.05
0.03 *
TL/OSL/U/Th
Sand, Shells
0.02 −0.03 0.02
0.02
0.03
0.00 Since MIS 25
U/Th/OSL/AA
Shells
0.05
0.01 0.05
0.02 −0.01 0.03
0.05
0.01 0.05
0.04
0.01 0.05
0.02 −0.01 0.03
0.06
0.02 0.07
0.01
0.01
0.01
0.01
0.01
0.01
0.07
0.04
0.06
0.06
0.04
0.07
0.04
0.02
0.04
0.04
0.02
0.06
U/Th/malacology
U/Th/malacology
U/Th/malacology
U/Th/malacology
U/Th/malacology
U/Th/malacology
Shells
Shells
Shells
Shells
Shells
Shells
0.20 0.02
0.22
0.19 0.23
0.01
0.24
0.22 Pliocene
U/Th
Shells
0.02 0.02
0.03 0.02
0.03
0.05
0.00 0.04
0.01 0.05
0.01
0.01
0.05
0.07
0.03 Mid Pliocene
0.04 >MIS 5e
Morpho-stratigraphy Shells
U/Th/
Shells
morpho-stratigraphy/
14
C
0.00
0.02
0.02
0.02
0.04
0.06
−0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.37
Min
rate
0.07
0.12
0.08
0.00
on data
on
0.35 Late Pliocene
0.02
0.04
0.04
0.04
0.06
0.08
−0.01
0.03
0.04
*
*
Pliocene
Pliocene
Pliocene
Pliocene
Meghraoui et al., 1996;
Morel and Meghraoui, 1996
Cadet et al., 1977
Angelier et al., 1976
Angelier et al., 1976
Angelier et al., 1976
Angelier et al., 1976
Angelier et al., 1976
Ferranti et al., 2006
Angelier et al., 1976
Angelier et al., 1976;
El Gharbaoui, 1977
Cadet et al., 1977
Cadet et al., 1977
Angelier et al., 1976;
Cadet et al., 1977; El Kadiri et al., 2010
Cadet et al., 1977
Angelier et al., 1976; Cadet et al., 1977
Angelier et al., 1976; Cadet et al., 1977
Angelier et al., 1976;
Stearns and Thurber, 1965
Cadet et al., 1977
Angelier et al., 1976; Ferranti et al.,
2006;
Stearns and Thurber, 1965
Aberkan et al., 1987;
Barton et al., 2009; Plaziat et al., 2006
Chabli et al., 2005; Coque and Jauzein,
1965;
Lefèvre and Raynal, 2002;
Occhietti et al., 2002; Rhodes et al, 2006;
Texier et al., 1994, 2002
Ferranti et al., 2006
Plaziat et al., 2008; Weisrock et al., 1999
Plaziat et al., 2008; Weisrock et al., 1999
Plaziat et al., 2008; Weisrock et al., 1999
Plaziat et al., 2008; Weisrock et al., 1999
El Gharbaoui et al., 1994; Giresse, 1989;
Plaziat et al., 2008; Stearns and Thurber,
1965; Weisrock et al., 1999
El Gharbaoui et al., 1994; Giresse, 1989;
Meghraoui et al., 1998;
Stearns and Thurber, 1965
Westaway et al., 2009
Brebion and Ortlieb, 1976;
Hoang et al., 1978; Ortlieb, 1975;
2
3
3
3
3
3
3
2
3
4
3
3
3
3
3
3
3
3
3
4
5
3
3
3
3
3
3
K. Pedoja et al. / Tectonophysics 601 (2013) 236–244
22
duration of
registration
Uplift rates without
eustasy***
3
2
4
241
242
K. Pedoja et al. / Tectonophysics 601 (2013) 236–244
On the north African margin, coastal terrace sequences have been
commented upon for more than a century (e.g., Lamothe, 1911 in
Saoudi, 1989) with more than 40 publications since 1960 of either
local descriptions (e.g. El Kadiri et al., 2010) or regional studies with tectonic interpretation (e.g. Angelier et al., 1976; Meghraoui et al., 1996;
Morel and Meghraoui, 1996). On the coast of Libya, Tunisia, Algeria
and Morocco, coastal sequences including MIS 5e are described for
more than 49 sites (Fig. 1, Table 1; see also supplementary data of
Pedoja et al. (2011) for the Spanish data). As previous workers do, we
note that the Algerian and Libyan sequences are not as well studied as
Moroccan or Tunisian ones. The records mostly consist of marine
terraces with associated beach deposits (i.e. “plages soulevées” of the
French-speaking authors) covered by aeolian and/or colluvial deposits.
On the Moroccan and Algerian coasts, the typical morphostratigraphy
can be described as two to three lowstand marine terraces overlooked
by 1 to 2 rasas (Table 1). In this area, the reported elevation of MIS 5e
indicators ranges from 0 to 45 m with a mean of 10 m. Excluding low
confidence data (i.e. due to bad dating, bad location, etc.), this average
falls to 6–7 m. The coastal uplift of the northwestern part of the African
margin, although still lacking detailed studies, appears rather homogeneous and is likely related to the collisional setting between Africa and
Eurasia. This pattern is expressed, for example, by the increase in altitude of the MIS 5e indicators on the Tangier peninsula (Table 1, Fig. 1).
5. Fold geometry and modeling of fold growth
Maouche et al. (2011) postulate that the Sahel structure is an
onshore asymmetric anticline, and that deformation is co-seismic.
Consequently, they apply an elastic dislocation modeling based on
this geometry combined with different scenarios of fault-related
fold segments in order to estimate the coseismic surface deformation
and uplift. They compare these estimates with the occurrence of
uplifted marine terraces and notches along the structure to choose
the best scenario. They thus propose the occurrence of exceptional
M > 7 earthquakes in Algeria.
It must be stressed out that previous workers (Aymé et al., 1954;
Yassini, 1975) present the Sahel onshore ridge as a monoclinal series
of Neogene deposits. Fig. 2, which corresponds to a cross section east
of the Mazafran River and valley, indeed illustrates the monoclinal
structure of the Sahel structure onshore. In several points of observation (A, B, C, D, E, F in Fig. 2), the Pliocene series (possibly including
upper Miocene deposits at its base) crops out quite well. The Pliocene
series is composed of two main units: Plaisancian marls at the base
are overlain by Astien molassic sandstones. In some places, the
marly Plaisancian deposits include several distinct beds of (bioturbated) hard limestone interspersed in the marl series which, as the overlying sandstones, depict a clear dip to the SE (Fig. 2). Consequently, if
the Sahel structure is an anticline, the fold axis must be located in the
sea and not onshore. This distinct geometry must be considered
because it would significantly modify the spatial distribution of the
coseismic surface deformation calculated by Maouche et al. (2011)
along the Sahel ridge using an elastic dislocation modeling.
6. Conclusions
We reiterate what previous workers have demonstrated. First, the
highest marine terrace in the area (T1, 175 m) cannot be correlated to
the last interglacial maximum (MIS 5e). The dates used by Maouche
et al. (2011), obtained by Stearns and Thurber (1965), of c. 130 ka
come from deposits b 10 m above sea level. Consequently, an uplift
rate extrapolated from that age would be on the order of (and no
more than) 0.1 mm/yr and would give an age of >1 Ma for T1 of
Maouche et al. (2011). This uplift rate, consistent with other observations along the northern coast of Africa, is drastically different from
Maouche et al.'s (2011) estimates of ~0.84–1.2 mm/yr. Finally, the
co-seismic uplift process proposed by Maouche et al. (2011) for the formation of the marine terrace sequence east of Algiers can be rejected
based on chronology and morphotectonics of well-established cases.
On all these grounds, we reject key parts of the contribution by
Maouche et al. (2011) dealing high-frequency coseismic activity,
very large (M > 7) earthquakes, and finally, very high uplift rates.
The Algerian coastal area appears more as a “classical,” slowly
uplifting region during Plio-Quaternary times. Much remains to be
understood in terms of crustal processes, modalities of the uplift,
and chronology of events leading to the formation of the sequence
of marine terraces present on the flank of the Sahel anticline.
Fig. 1. Coastal uplift of the north-western part of the African margin deduced from the elevation of MIS 5e paleocoast in the area. * data compiled by Pedoja et al. (2011). In red,
above the white arrow, uplift rate supported by Maouche et al. (2011). Eurasian plate has been put into brackets because several microblocks are present in the area. Note that
the East Lybia and the western Sahara (c.f. Table 1) are not presented on this figure.
K. Pedoja et al. / Tectonophysics 601 (2013) 236–244
243
Fig. 2. Cross section illustrated by photos of the east bank of the oued Mazafran. This cross section (actualized from Aymé et al., 1954 and Yassini, 1975) clearly shows the monocline
and not anticline structure of the Sahel, west of Algiers. ABCDEF are detail geolocalized photos.
Unfortunately, we fail to believe that relevant information and interpretation were brought to bear on these issues by Maouche et al.
(2011).
References
Aberkan, M., Cahuzac, B., Carbonel, P., 1987. Lagoonal-lacustrine paleoenvironments of
the Moroccan Atlantic shoreline during the late Pleistocene. Bulletin de l'Institut
Scientifique de Rabat 11, 117–123.
Angelier, J., Cadet, J.P., Delibrias, G., Fourniguet, J., Gigout, M., Guillemin, M., Hogrel,
M.T., Lalou, C., Pierre, G., 1976. Les déformations du Quaternaire marin, indicateurs
néotectoniques. Quelques exemples méditerranéens. Revue de Géographie Physique et de Géologie Dynamique XVIII, 427–448.
Aymé, A., Aymé, J.M., Magné, J., 1954. Etude des terrains néogènes de la Cluse du
Mazafran (Sahel d'Alger). Bulletin du Sevice de la Carte Géologique 2, 129–150.
Barton, R.N.E., Bouzouggar, A., Collcutt, S.N., Schwenninger, J.-L., Clark-Balzan, L., 2009.
OSL dating of the Aterian levels at Dar es-Soltan I (Rabat, Morocco) and implications for the dispersal of modern Homo sapiens. Quaternary Science Reviews 28,
1914–1931.
Bernat, M., Paskoff, R., Sanlaville, P., 1985. Datations de terrasses marines de la côte est
de la Tunisie: méthode I0–U appliquée aux mollusques fossiles, un example de
contamination subactuelleit. Revue de Géologie Dynamique et de Géographie Physique 26, 157–161.
Berryman, K., 1992. A stratigraphic age of Rotoehu Ash and late Pleistocene climate interpretation based on marine terrace chronology, Mahia Peninsula, North Island,
New Zealand. New Zealand Journal of Geology and Geophysics 35, 1–7.
Berryman, K., 1993a. Distribution, age, and deformation of the late Pleistocene marine
terraces at Mahia Peninsula, Hikurangi subduction margin, New Zealand. Tectonics
12, 1365–1379.
Berryman, K., 1993b. Age, height, and deformation of Holocene marine terraces at Mahia
Peninsula, Hikurangi subduction margin, New Zealand. Tectonics 12, 1347–1364.
Bouaziz, S., Jedoui, Y., Barrier, É., Angelier, J., 2003. Néotectonique affectant les dépôts
marins tyrrhéniens du littoral sud-est tunisien: implications pour les variations du
niveau marinNeotectonics in the Tyrrhenian marine deposits of the southeastern Tunisian coast: implications for sea level changes. Comptes Rendus Geosciences 335,
247–254.
Brebion, P., Ortlieb, L., 1976. Nouvelles recherches géologiques et malacologiques sur le
Quaternaire de la province de Tarfaya (Maroc méridional). Geobios 9, 529–550.
Cabioch, G., Ayliffe, L.K., 2001. Raised coral terraces at Malakula, Vanuatu, Southwest Pacific,
indicate high sea level during marine isotope stage 3. Quaternary Research 56, 357–365.
Cadet, J.P., Fourniguet, J., Gigout, M., Guillemin, M., Pierre, G., 1977. L'histoire
tectonique récente (Tortonien à Quaternaire) de l'Arc de Gibraltar et des bordures
de la mer d'Alboran. III -néotectonique des littoraux. Bulletin de la Société
Géologique de France XIX, 591–605.
Chabli, A., Galindo-Zaldivar, J., Akil, M., Marin-Lechado, C., Chalouan, A., Ruano, P., Bargach, K.,
Sanz de Galdeano, C., 2005. Déformations néotectonique dans les dépôts plioquaternaires de la région de Casablanca - Mohammedia (Meseta côtière, Maroc).
Revista de la Sociedad Geologica de España 18, 169–178.
Chakroun, A., Zaghbib-Turki, D., Miskovsky, J.-C., Davaud, E., 2009. Two Tyrrhenian
transgressive cycles in coastal deposits of the Cap Bon Peninsula, Tunisia.
Quaternaire 20, 215–226.
Chappell, J., 1974. Geology of coral terraces, Huon Peninsula, New Guinea: a study of quaternary tectonic movements and sea level changes. Geological Society of America Bulletin
85, 553–570.
Coque, R., Jauzein, A., 1965. Le Quaternaire moyen de l'Afrique du Nord. Bulletin de
l'Association Française pour l'Etude du Quaternaire 2, 117–132.
244
K. Pedoja et al. / Tectonophysics 601 (2013) 236–244
Cornu, S., Pätzold, J., Bard, E., Meco, J., Cuerda-Barcelo, J., 1993. Paleotemperature of the
last interglacial period based on [delta]18O of Strombus bubonius from the western
Mediterranean Sea. Palaeogeography, Palaeoclimatology, Palaeoecology 103, 1–20
(200 KA of global change).
El Gharbaoui, A., 1977. Note préliminaire sur l'évolution géomorphologique de la
Péninsule de Tanger. Bulletin de la Société Géologique de France 7, 615–622.
El Gharbaoui, A., Choukri, A., Berrada, M., Falaki, H., Reyss, J.-L., 1994. Datation de deux
niveaux marins sur la côte du Haut Atlas Atlantique à 275 000 ans et à 120 000 ans.
Cahiers de géographie du Québec 38, 241–247.
El Kadiri, K., Sanz de Galdeano, C., Pedrera, A., Chalouan, A., Galindo-Zaldivar, J., Julia, R.,
Akil, M., Hlila, R., Ahmamou, M., 2010. Eustatic and tectonic controls on Quaternary
Ras Leona marine terraces (Strait of Gibraltar, northern Morocco). Quaternary Research 74, 277–288.
Elmejdoub, N., Jedoui, Y., 2009. Pleistocene raised marine deposits of the Cap Bon peninsula (N-E Tunisia): records of sea-level highstands, climatic changes and coastal
uplift. Geomorphology 112, 179–189.
Ferranti, L., Antonioli, F., Mauz, B., Amorosi, A., Dai Pra, G., Mastronuzzi, G., Monaco, C.,
Orrù, P., Pappalardo, M., Radtke, U., Renda, P., Romano, P., Sansò, P., Verrubbi, V.,
2006. Markers of the last interglacial sea-level high stand along the coast of Italy.
Tectonic implications: Quaternary International Quaternary sea-level changes:
contributions from the 32nd IGC, 145–146, pp. 30–54.
Galipaud, J.-C., Pineda, R., 1998. Archaeological evidence of differential uplift of Malo (Vanuatu) during the Late Holocene. Compte Rendu Académie des Sciences, Paris 327,
777–779.
Giresse, P., 1989. Quaternary sea-level changes on the Atlantic coast of Africa. In: Tooley,
M.J., Shennan, I. (Eds.), Sea-level Changes. Basil Blackwell, London, pp. 249–275.
Hoang, C.T., Ortlieb, L., Weisrock, A., 1978. Nouvelles datations 230Th/234U de terrasses
marines “ouljiennes” du sud-ouest du Maroc et leurs significations stratégique et
tectonique. Comptes-Rendus de l'Académie des Sciences: série D 286, 1759–1762.
Ikeda, S., Kasuya, M., Ikeya, M., 1991. ESR ages of middle Pleistocene corals from the
Ryukyu Islands. Quaternary Research 36, 61–71.
Ikeya, M., Ohmura, K., 1983. Comparison of ESR ages of corals from marine terraces
with 14C and 230Th/234U ages. Earth and Planetary Science Letters 65, 34–38.
Inagaki, M., Omura, A., 2006. Uranium-series age of the highest marine terrace of the Upper
Pleistocene on Kikai Island, Central Ryukyus, Japan. Quaternary Research 45, 41–48.
Jedoui, Y., Kallel, N., Labeyrie, L.D., Reyss, J.-L., Montacer, M., Fontugne, M., 2001.
Variabilité climatique rapide lors du dernier Interglaciaire (stade isotopique
marin 5e), enregistrée dans les sédiments littoraux du Sud-Est tunisien. Comptes
Rendus de l'Académie des Sciences 333, 733–740.
Jedoui, Y., Reyss, J.-L., Kallel, N., Montacer, M., Ismaïl, H.B., Davaud, E., 2003. U-series evidence for two high Last Interglacial sea levels in southeastern Tunisia. Quaternary
Science Reviews 22, 343–351.
Jouannic, C., Taylor, F.W., Bloom, A.L., Bernat, M., 1980. Late Quaternary uplift, from
emerged reef terraces of Santo and Malekula islands, central New Hebrides island
arc: Un Escap, CCOP/SOPAC. Technical Bulletin 3, 91–108.
Jouannic, C., Taylor, F.W., Bloom, A.L., 1982. Sur la surrection et la déformation d'un arc jeune:
l'arc des Nouvelles Hébrides. Travaux et documents ORSTOM, v. 147, pp. 223–246.
Konishi, K., Shlange, S.O., Omura, A., 1970. Neotectonic rates in the central Ryukyu
Islands derived from 230Th coral ages. Marine Geology 9, 225–240.
Lajoie, K.R., 1986. Coastal tectonics. In: Press, N.A. (Ed.), Active Tectonic. National Academic Press, Washington D. C., pp. 95–124.
Lefèvre, D., Raynal, J.-P., 2002. The plio-pleistocene formations of Casablanca and the
marine Quaternary chronostratigraphy of Morocco revisited. Quaternaire 13, 9–21.
Maejima, Y., Matsuzaki, H., Higashi, T., 2005. Application of cosmogenic 10Be to dating
soils on the raised coral reef terraces of Kikai Island, southwest Japan. Geoderma
126, 389–399.
Maouche, S., Meghraoui, M., Morhange, C., Belabbes, S., Bouhadad, Y., Haddoum, H.,
2011. Active coastal thrusting and folding, and uplift rate of the Sahel Anticline
and Zemmouri earthquake area (Tell Atlas, Algeria). Tectonophysics 509, 69–80.
Mauz, B., Elmejdoub, N., Nathan, R., Jedoui, Y., 2009. Last interglacial coastal environments
in the Mediterranean–Saharan transition zone. Palaeogeography, Palaeoclimatology,
Palaeoecology 279, 137–146.
McLaren, S.J., Rowe, P.J., 1996. The reliability of uranium series mollusc dates from the
western Mediterranean basin. Quaternary Science Reviews 15, 709–717.
Meghraoui, M., Morel, J.L., Andrieux, J., Dahmani, M., 1996. Pliocene and Quaternary tectonics of the Tell-Riff mountains and Alboran sea, a complex zone of continent–continent convergence. Bulletin de la Société Géologique de France 167, 141–147.
Meghraoui, M., Outtani, F., Choukri, A., De Lamotte, D.F., 1998. Coastal tectonics across
the South Atlas Thrust Front and the Agadir Active Zone, Morocco. In: Stewart, I.S.,
Vita-Finzi, C. (Eds.), Coastal tectonics: London, Geological Society Special Publications, v. 146, pp. 239–253.
Merritts, D.J., Bull, W.B., 1989. Interpreting Quaternary uplift rates at the Mendocino triple
junction, northern California, from uplifted marine terraces. Geology 17, 1020–1024.
Merritts, D.J., Chadwick, O.A., Hendricks, D.M., 1991. Rates and processes of soil evolution on uplifted marine terraces, northern California. Geoderma 51, 241–275.
Miossec, A., 1977. Traces de stationnement de la mer au Quaternaire récent sur le littoral des
Mogods. Bulletin de l'Association Française pour l'Etude du Quaternaire 14, 112–115.
Morel, J.L., Meghraoui, M., 1996. Goringe-Alboran-Tell tectonic zone: a transpression
system along the Africa–Eurasia plate boundary. Geology 24, 755–758.
Occhietti, S., Raynal, J.-P., Pichet, P., Lefèvre, D., 2002. Aminostratigraphie des formations littorales Pléistocènes et Holocènes de la région de Casablanca, Maroc.
Quaternaire 13, 55–64.
Ortlieb, L., 1975. Recherches sur les formations Plio-Quaternaires du littoral ouestsaharien (20°30′–20°40′ lat. N). Travaux et Documents de l'ORSTOM, v. 48, p. 284.
Ota, Y., 1980. Tectonic landforms and Quaternary tectonics in Japan. GeoJournal 4, 111–124.
Ota, Y., 1985. Marine terraces and active faults in Japan with special reference to coseismic events. In: Morisawa, M., Hack, J.T. (Eds.), Tectonic Geomorphology.
Allen & Unwin.
Ota, Y., Omura, A., 1992. Contrasting styles and rates of tectonic uplift of coral reef terraces in the Ryukyu and Daito Islands, Southwestern Japan. Quaternary International 15 (16), 17–29.
Ota, Y., Yamaguchi, M., 2004. Holocene coastal uplift in the Western Pacific Rim in the
context of the Late Quaternary uplift. Quaternary International 120, 105–117.
Pedoja, K., Ortlieb, L., Dumont, J.F., Lamothe, M., Ghaleb, B., Auclair, M., Labrousse, B.,
2006. Quaternary coastal uplift along the Talara Arc (Ecuador, Northern Peru)
from new marine terrace data. Marine Geology 228, 73–91.
Pedoja, K., Husson, L., Regard, V., Cobbold, P.R., Ostanciaux, E., Johnson, M.E., Kershaw,
S., Saillard, M., Martinod, J., Furgerot, L., Weill, P., Delcaillau, B., 2011. Relative sealevel fall since the last interglacial stage: are coasts uplifting worldwide? Earth-Science Reviews 108, 1–15.
Plaziat, J.-C., Aberkan, M., Reyss, J.-L., 2006. New late Pleistocene seismites in a shoreline series including eolianites, north of Rabat (Morocco). Bulletin de la Société
Géologique de France 177, 323–332.
Plaziat, J.-C., Aberkan, M., Ahmamou, M., Choukri, A., 2008. The Quaternary deposits of
Morocco, continental evolution. The Geology of Morocco 359–376.
Rhodes, E.J., Singarayer, J.S., Raynal, J.-P., Westaway, K.E., Sbihi-Alaoui, F.Z., 2006. New
age estimates for the Palaeolithic assemblages and Pleistocene succession of Casablanca, Morocco. Quaternary Science Reviews Dating the Quaternary: Progress in
Luminescence Dating of Sediments, v. 25, pp. 2569–2585.
Saoudi, N.-E., 1989. Pliocène et Pléistocène inférieur et moyen du Sahel Occidental
d'Alger: Alger, Entreprise Nationale du Livre . (174 pp.).
Sasaki, K., Omura, A., Murakami, K., Sagawa, N., Nakamori, T., 2004. Interstadial coral
reef terraces and relative sea-level changes during marine oxygen isotope stages
3–4, Kikai Island, central Ryukyus, Japan. Quaternary International Coastal Environmental Change during Sea-Level Highstands, IGCP 437 Symposium, Barbados,
v. 120, pp. 51–64.
Siddal, M., Chappell, J., Potter, E.-K., 2006. Eustatic sea level during past interglacials. In:
Sirocko, F., Claussen, M., Sanchez Goñi, M.F., Litt, T. (Eds.), The Climate of Past Interglacials. Elsevier, Amsterdam, pp. 75–92.
Stearns, C.E., Thurber, D.L., 1965. Th230–U234 dates of late Pleistocene marine fossils
from the Mediterranean and Moroccan littorals. Quaternaria 7, 29–42.
Taylor, F.W., Isacks, B.L., Jouannic, C., Bloom, A.L., Dubois, J., 1980. Coseismic and Quaternary vertical tectonic movements, Santo and Malekula Islands, New Hebrides Island Arc. Journal of Geophysical Research 85, 5367–5381.
Taylor, F.W., Jouannic, C., Gilpin, L., Bloom, A.L., 1982. Coral colonies as monitors of
change in relative level of the land and sea: application to vertical tectonism.
Proc.4th Int. Coral Reef Congress, pp. 485–492.
Taylor, F.W., Jouannic, C., Bloom, A.L., 1985. Quaternary uplift of the Torres Islands,
northern New Hebrides frontal arc: comparison with Santo and Malekula Islands,
central New Hebrides frontal Arc. Journal of Geology 93, 419–438.
Taylor, F.T., Frohlich, C., Lecolle, J., Strecker, M.R., 1987. Analysis of partially emerged
corals and reef terraces in the central Vanuatu arc: comparison of contemporary
coseismic and nonseismic with Quaternary vertical movements. Journal of Geophysical Research 92, 4905–4933.
Texier, J.P., Evin, J., Occhietti, S., Raynal, J.-P., Lefèvre, D., 1994. Upper Pleistocene and
Holocene records on the Casablanca coast (Morocco). Quaternaire 5, 173–180.
Texier, J.P., Lefèvre, D., Raynal, J.-P., El Graoui, M., 2002. Lithostratigraphy of the littoral
deposits of the last one million years in the Casablanca region (Morocco).
Quaternaire 13, 23–41.
Vita-Finzi, C., 1967. Late Quaternary alluvial chronology of Northern Algeria. Man 2,
205–215.
Weisrock, A., Occhietti, S., Hoang, C.T., Lauriat-Rage, A., Brebion, P., Pichet, P., 1999.
Pleistocene littoral sequences of the Atlantic Atlas between Agadir and Cape Rhir,
Morocco. Quaternaire 10, 227–244.
Westaway, R., Aït Hssaine, A., Demir, T., Beck, A., 2009. Field reconnaissance of the AntiAtlas coastline, Morocco. Fluvial and Marine Evidence for Late Cenozoic Uplift:
Global and Planetary Change Fluvial Sequences as Evidence for Landscape and Climatic Evolution in the Late Cenozoic: A Synthesis of Data From IGCP 518, v. 68, pp.
297–310.
Wood, P.B., 1994. Optically stimulated luminescence dating of a Late Quaternary shoreline deposit, Tunisia. Quaternary Geochronology (Quaternary Science Reviews) 13,
513–516.
Yassini, I., 1975. Planktonic foraminiferal biozonation of neogene deposits in the
“Sahel” of Algier, Algeria. Rivista Italiana di Paleontologia 81, 89–120.