i-Composites - Microwave Curing to Increase Rate

Commentaires

Transcription

i-Composites - Microwave Curing to Increase Rate
Feasibility study into Microwave curing of
composites
Victoria Coenen
Aircelle UK Ltd
Content
Introduction to Aircelle
 SAFRAN Group
 Aircelle
 Aircelle UK Ltd
i-composites project – Microwave Curing
 Scope of project / top level plan
 Literature review / technology
 Aircelle materials / products
 Cure cycle optimisation plan
 Microwave tooling methodology
 Business Case / Project KPIs
DIRECTION / Date
1
Ce document et les informations qu’il contient sont la propriété de Aircelle. Ils ne doivent pas être copiés ni communiqués à un tiers sans l’autorisation préalable et écrite de Aircelle.
Safran Group
Aircraft Equipment
Aerospace propulsion




Snecma
Snecma Propulsion Solide
Turbomeca
Techspace Aero
27 %
Aerospace
Propulsion
10 %
54 %
Aircraft equipment






9%
Aircelle
Hispano-Suiza
Labinal
Messier-Bugatti
Messier-Dowty
Teuchos
Defence
Electrically-actuated
carbon brake
Hemispherical
resonating gyro
Security
Thermal imager
3D RTM fan blade
Defense security

Sagem Défense Sécurité

Sagem Sécurité
Mica missile seeker
LEAP-X engine
Revenue:
CMC nozzle and combustor
10,448 million euros
Recurring operating income: 698 million euros
Félin integrated
equipment suite
Net income – Group share:
376 million euros
Biometric recognition
DIRECTION / Date
2
Ce document et les informations qu’il contient sont la propriété de Aircelle. Ils ne doivent pas être copiés ni communiqués à un tiers sans l’autorisation préalable et écrite de Aircelle.
SAFRAN GROUP ON COMMERCIAL AIRCRAFT
Engine equipment and parts
• Integrated engine control systems
• Power transmissions
• Engine modules and components
• Composite engine parts
Aircraft equipment
• Network server systems
• Back-up flight control
• Secure data link
• Cockpit control systems
• Electrical wiring systems
• Aircraft condition monitoring systems
• Composite aerostructures
• Auxiliary power units
• Hydraulic systems
• Sensors and actuators
• Ventilation/filtration
• Inertial references
Engine services
• Maintenance, repair and overhaul
• Engine testing and test equipment
Engines
• CFM56 family (50/50 with GE)
• SAM146 engine for the Russian
Regional Jet (50/50 with NPO Saturn)
• Participation in programs: CF6, GE90,
GE90-115B, GP7000, PW4000, AS900, CF34
DIRECTION / Date
3
Nacelles
Nacelles and components
(thrust reversers,…)
Landing & braking systems
• Landing gear for all types of aircraft
• Braking/landing control systems
• Wheels and carbon brakes
• Control systems and hydraulics
• Maintenance, repair and overhaul
Ce document et les informations qu’il contient sont la propriété de Aircelle. Ils ne doivent pas être copiés ni communiqués à un tiers sans l’autorisation préalable et écrite de Aircelle.
Aircelle Presentation
Nacelles
that cover all engines
Aircelle Programs
Regional & Business Aircraft





BOMBARDIER:
 Thrust reverser for the Global Express and the G5000
with the BR710, and Challenger 300 with the HTF7000
 Nacelle for the Learjet 85 with the PW307B
DASSAULT:
 Nacelle for Falcon 7X PWC307 (JV with MHD)
EMBRAER:
 Reverser + Air intake for the ERJ135.145 - AE3007
 Nacelle for the ERJ 170 with the CF34-8 (MHD)
GULFSTREAM:
 Reverser for the G500 and the 550 with the BR710
SUKHOI:
 Nacelle for the SaM146 on the SuperJet 100
DIRECTION / Date
5
Single-aisle & widebody aircraft



AIRBUS:
 Rolls Royce Trent 900 Nacelle on the A380
 Engine Alliance GP7200 Nacelle on the A380
 Rolls Royce Trent 500 Nacelle on the A340-500/600
 CFM56 Reverser on the A340-200/300
 CFM56 Reverser for the A320 family
 Rolls Royce Trent 700 Reverser on the A330
 PW6000 Nacelle on the A318
BOEING
 Rolls Royce RB211 Reverser on the 747
 Rolls Royce RB211 Reverser on the 767
DOUGLAS:
 CFM56 Reverser on the DC 8-71
Ce document et les informations qu’il contient sont la propriété de Aircelle. Ils ne doivent pas être copiés ni communiqués à un tiers sans l’autorisation préalable et écrite de Aircelle.
3,000 employees, 7 sites
Pont-Audemer (60)
Aircelle Europe Services
Burnley (700)
Aircelle Ltd
Le Havre (1430)
Florange (200)
SLCA
Toulouse (220)
Plaisir (180)
Casablanca (330)
Aircelle Maroc
DIRECTION / Date
6
R&D
Customer Support
Nacelles assembly
Composites manufacturing
Aerostructures assembly
Hot exhaust manufacturing
Podding
Sheet metal forming
Repair and overhaul
Machining
Ce document et les informations qu’il contient sont la propriété de Aircelle. Ils ne doivent pas être copiés ni communiqués à un tiers sans l’autorisation préalable et écrite de Aircelle.
Aircelle UK Programs & Processes
Rolls Royce Trent 700 Thrust Reverser on the A330
A380 Thrust Reverser

Blocker doors for T900 & GP7200 engines

Inner Fixed Structure (GP7200)

Front Frame (T900 / GP7200)
Bombardier Challenger 300 Thrust Reverser (AS907)
Embraer ERJ135 & 145 Thrust Reverser & Air Inlet
Rolls Royce RB211 on the Boeing 747 & 767
Acoustic sandwich panel manufacture

Metallic / Composite

SDOF / 2DOF
Associated processes

Adhesive reticulation – skin / core

Acoustic drilling

Hand lay-up / vacuum bagging

Autoclave curing

Inspection - C-scan / A-scan
DIRECTION / Date
7
Ce document et les informations qu’il contient sont la propriété de Aircelle. Ils ne doivent pas être copiés ni communiqués à un tiers sans l’autorisation préalable et écrite de Aircelle.
i-composites project
MICROWAVE CURING
DIRECTION / Date
8
Ce document et les informations qu’il contient sont la propriété de Aircelle. Ils ne doivent pas être copiés ni communiqués à un tiers sans l’autorisation préalable et écrite de Aircelle.
Scope of The Project
A feasibility study into the use of microwave technology to cure composite aerospace components
The study will provide the following outputs;

A curing process for a particular material system

Cure cycle optimisation for a range of material thicknesses / component geometries

Analysis of material properties obtained through the use of microwave curing

An investigation into tooling requirements for this technology with cost implications

A calculation of energy & cost savings

Compatibility with existing infrastructure / equipment assessed

A business case for the adoption of the technology
There is also the aspect of collaboration with the other partners in Theme C – Energy Reduction

Airbus UK - Correlation between degree of cure prediction by modelling cure kinetics & direct measure of degree of
cure using real-time dynamic dielectric cure monitoring (DEA).

Fraser Nash – Development of a validated coupled CFD-FE thermo-structural method for simulating the cure process
(oven & microwave)
DIRECTION / Date
9
Ce document et les informations qu’il contient sont la propriété de Aircelle. Ils ne doivent pas être copiés ni communiqués à un tiers sans l’autorisation préalable et écrite de Aircelle.
Top Level Project Plan
Definition (8 weeks)

Material & component selection

Consider simulation & cure monitoring techniques

Assess TRL levels (equipment / process)
Design (12 weeks)

Plan cure cycle Optimisation (define cure cycles to trial / tests to be performed)

Investigate microwave tooling methodology / options / optimisation

Design tool
Manufacturing (12 weeks)

Flat panel manufacture (cure cycle optimisation / mechanical property verification)

Element manufacture

Tooling manufacture
Assembly / Commission (12 weeks)

Manufacture of product demonstrator

Tear down / inspection of product demonstrator
Report (8 weeks)

Business case

Results of feasibility study
DIRECTION / Date
10
Ce document et les informations qu’il contient sont la propriété de Aircelle. Ils ne doivent pas être copiés ni communiqués à un tiers sans l’autorisation préalable et écrite de Aircelle.
WP1 – Definition
Microwave oven to be used for the project is at TWI (The Welding
Institute) in Middlesbrough
Votsch HEPHAISTOS Microwave oven

An internationally patented system characterised by a very high field
homogeneity.

Hexagonal chamber enables more homogenous heating

Conventional production systems (e.g. metal tools) may be kept.

Microwaves are the only physical heating method for the specific,
volumetric heating of a product.

The furnace chamber itself remains cold.

Standard operating frequency is 2.45GHz, since organic materials are
most susceptible to this.
“Microwave curing has significant advantages in terms of the energy
& time required to cure components; typically, only one third of
the energy & time is required to cure a component when
compared to conventional autoclave methods thus leading to
potential cost savings.”
DIRECTION / Date
11
Ce document et les informations qu’il contient sont la propriété de Aircelle. Ils ne doivent pas être copiés ni communiqués à un tiers sans l’autorisation préalable et écrite de Aircelle.
WP1 – Definition
Internet based review of literature

Microwave curing of polymers has been studied for > 20 yrs

Models of microwave behaviour available

Microwave technology / heating well understood
Majority of literature not applicable to understanding the factors affecting the manufacture of high
quality prepreg laminates in a microwave

Analysis of resin only – reaction to microwave heating

Studies into effect of altering resin chemistry

Application of microwave curing / heating to resin transfer moulding

Analysis of single fibre composites
Work has been done on microwave curing of prepreg but this is not typically in the public domain
Practical advice / guidance in terms of simple dos & don'ts

Consumables

Vacuum fittings

Temperature sensors

Tooling methodology

Things to avoid!!!

How to make good quality laminates??
DIRECTION / Date
12
Ce document et les informations qu’il contient sont la propriété de Aircelle. Ils ne doivent pas être copiés ni communiqués à un tiers sans l’autorisation préalable et écrite de Aircelle.
WP1 – Definition
Upper access panel
Hybrid Composite
913/54%/G783
Down select material

Typical Aircelle materials & processes considered

Carbon / epoxy prepreg – 5HS fabric, HTS 3K fibres, Hexcel 914 resin

Bismaleimide prepreg (5HS fabric)

Carbon / glass hybrid prepreg (Hexcel 913 resin)

Lightning protection – copper or bronze mesh
Down select product demonstrator

Integrated Inner barrel
Carbon epoxy
914C/40%/703
Typical Aircelle components / part families considered

Thrust reverser cowlings – large thin skin, double curved structures

Honeycomb reinforcement for stiffness & / or acoustic treatment

Large complex structural components

Smaller scale components – access panels / kicker plates / side members
Lower access panel
Hybrid Composite
913/54%/G783
Study will consider only monolithic for cure cycle trials / optimisation

No bonding / adhesive / potting / splice adhesive etc
Size limitations

Microwave dimensions

Transportation
Tooling – compatibility with microwave………….
DIRECTION / Date
13
Ce document et les informations qu’il contient sont la propriété de Aircelle. Ils ne doivent pas être copiés ni communiqués à un tiers sans l’autorisation préalable et écrite de Aircelle.
WP2 – Design
Cure cycle optimisation plan

Cure cycle time reduction through the use of microwave curing – how??

Increase in ramp rates = reduction in cure cycle duration

Typical rapid curing techniques reduce time taken to reach dwell temperatures

Dwell durations as recommend by manufacture / autoclave cure cycle specifications

Considerable reductions in cure cycle duration, increasing ramp rates from 1-2°C to 12-15°C / minute
Microwave curing may offer completely different options


Instantaneous volumetric heating of material

How does the material react?

What is the effect on cure reactions?

What is the effect on material quality / mechanical properties?
Laminate is heated in an effectively ‘cold’ environment


Opportunity to monitor the material as it cures & respond / tailor the cure cycle accordingly
Influence of tooling material / laminate thickness / lay-up etc
All of the above are unknown…………..

A trial & error approach is required

A simple step by step approach to defining a suitable microwave cure cycle is proposed..…..
DIRECTION / Date
14
Ce document et les informations qu’il contient sont la propriété de Aircelle. Ils ne doivent pas être copiés ni communiqués à un tiers sans l’autorisation préalable et écrite de Aircelle.
WP2 - Design
Sample definition
To optimise a cure cycle it is necessary to assess a range of laminate thicknesses

For each cure trial panels of 2mm, 4mm, 8mm and 12mm will be manufactured
Tool size – 500 x 500 mm
2mm
4mm
8mm
12mm
Panel size – 200 x 200 mm
It is also necessary to assess the affect of microwave curing on different lay-ups

Panels of [0], and [0/+45/-45/90]s lay-up will be trialled
Analysis of suitable consumables will be performed during the preliminary stages of the process

Bagging material / vac putty

Aluminium tape

Breather material

Thermocouples

Bleed pack / edge damming

Lightning protection
DIRECTION / Date
15
Ce document et les informations qu’il contient sont la propriété de Aircelle. Ils ne doivent pas être copiés ni communiqués à un tiers sans l’autorisation préalable et écrite de Aircelle.
Phase One – Characterisation of Microwave Cure Process
Theme C Collaborative
activity – Thick MTM44-1
flat panel (with ply buildups) incorporating cure
monitoring sensors, cure
cycle modelled / simulated.
5 off cure trials, 4 off 200 x 200mm samples of
thickness 2,4, 8 and 12 mm, 0 degree lay-up
10%
power
20%
power
30%
power
40%
power
50%
power
Assessment of the ramp rate achieved
Material quality tests: volume fraction, void content
Microwave power setting / ramp rate selected
Thickness effects
assessed
Assessment of
consumables
DIRECTION / Date
16
1 off cure trial, 4 off 200 x 200mm
samples of thickness 2,4, 8, 12 mm,
Quasi Isotropic [0/+45/-45/90]s lay-up
Selected power setting used to assess
effect of lay-up on heating,
material quality verified using c-scan &
microscopy
2 off cure trials, 4 off 200 x 200mm
samples of thickness 2,4, 8, 12 mm,
0 and [0/+45/-45/90]s degree lay-up
Selected power setting used to assess
homogeneity of heating for different
laminate thicknesses and lay-up
Cure process characterised & ramp rate selected
Ce document et les informations qu’il contient sont la propriété de Aircelle. Ils ne doivent pas être copiés ni communiqués à un tiers sans l’autorisation préalable et écrite de Aircelle.
Phases 2 & 3 - Cure Cycle Definition & Validation
Cure trials to assess different cure profiles as below, 4 off 200 x
200mm samples of thickness 2,4, 8 and 12 mm, 0 degree layup, standard dwell durations used
T
T
T
180
180
130
130
time
180
Flat samples, 2 mm thickness for
mechanical testing.
Number of material batches??
Sample conditioning??
time
time
Mechanical tests;
Tensile & Poisson’s ratio, Shear modulus (+/45), DSC, DMA, flexural, ILSS, density, fibre
volume fraction, void content
Laminate quality verified using microscopy, void content analysis
& ILSS tests, degree of cure assessed through DSC & DMA
Microwave cure cycle validated
Cure Profile & dwell durations selected
DIRECTION / Date
17
Ce document et les informations qu’il contient sont la propriété de Aircelle. Ils ne doivent pas être copiés ni communiqués à un tiers sans l’autorisation préalable et écrite de Aircelle.
WP2 – Design
Microwave Tooling Methodology
Temperature recording – sensors suitable to the microwave?

Material compatibility – shielding / local hotspots

Signal interference – reliable data

A range of sensors have been considered

Resistance temperature detectors (RTDs)

Fibre optics with Fibre Bragg Gratings

Thermocouples – Type K, Type E, Type N
Tool Materials suitable for microwave:

Copper : transparent

Bronze : alloy of copper & tin - both transparent to microwaves

Aluminium : reflects the magnetic field
Not suitable for use in the microwave :

Steel or Nickel : ferromagnetic
Other considerations

No sharp edges – sparks (tool material & laminate)

Other design features – nuts / bolts / screws / backing structure

Low pressure cure – lightweight tools

Redesign for new process
DIRECTION / Date
18
Ce document et les informations qu’il contient sont la propriété de Aircelle. Ils ne doivent pas être copiés ni communiqués à un tiers sans l’autorisation préalable et écrite de Aircelle.
WP2 – Design
Tool Design
Initial trial steel plate covered with aluminium tape

Steel plate all covered : OK

Steel plate + composite plies : OK
Initial trial – lightning protection

External panels are covered with a fine metallic
mesh to conduct lightning across the surface to
protect systems & structure beneath

Trials have shown these materials are safe to put
in the microwave

Intention is to include in product demonstrator
Steel plate + aluminium tape +
composite plies + bronze mesh : OK
Steel plate + aluminium tape +
composite plies + copper mesh : OK
NB : All tests have been done in a commercial microwave, 2.45 GHz
DIRECTION / Date
19
Ce document et les informations qu’il contient sont la propriété de Aircelle. Ils ne doivent pas être copiés ni communiqués à un tiers sans l’autorisation préalable et écrite de Aircelle.
WP2 – Design
Tool Design
4 off Test Panels (200mm x 200mm)
6mm aluminium plate (610mm x 610mm)
Fibre optic instrumentation embedded in underside of tool
Temperature Sensing – Fibre Bragg Grating fibre
optic sensors selected
Sensors embedded in tool to reduce risk of damage

Machined groove around each laminate position to
ensure each panel is laid up in same place

Temperature sensors under laminates measure how
much of the heat absorbed by the laminate is ‘lost’ to
the tool
Each laminate will have fibre optic sensors
embedded in the lay-up

SMART fibres chosen as supplier

Training planned on data capture equipment which
will be rented for the trials
Temperature sensor
DIRECTION / Date
20
Ce document et les informations qu’il contient sont la propriété de Aircelle. Ils ne doivent pas être copiés ni communiqués à un tiers sans l’autorisation préalable et écrite de Aircelle.
WP3 - Manufacturing
Status

Test panel drawings raised & issued

Tool drawings raised & issued

Tool in manufacture

Plies cut

Sensors on order
Manufacturing plan

Panels will be laid up in Burnley (sensors embedded)

Vacuum bagged & checked on site then transported to TWI

Arrive at TWI

Vacuum check & connection

Sensors connected & calibration

Press go & wait / watch

Analyse laminate quality & mechanical properties
Timescales

Cure cycle definition during October

Cure cycle validation during November

MTM44-1 panel (collaborative activity) during November

Manufacture & test of product demonstrator by end of January
DIRECTION / Date
21
Ce document et les informations qu’il contient sont la propriété de Aircelle. Ils ne doivent pas être copiés ni communiqués à un tiers sans l’autorisation préalable et écrite de Aircelle.
WP5 - Report
Throughout the project a cost analysis will be performed comparing the autoclave & microwave
processes, potential cost savings are as follows;

Recurring Costs;

Low temperature / pressure cure process may allow the use of lower cost consumables

Microwave curing provides reduced energy consumption as only part to be cured is heated
 Non Recurring Costs

Low temperature / pressure cure process may allow the use of cheaper / less complex tooling

Reduced cure cycle time allows higher production rates, less tooling required to meet rate
Throughout the project a business case for the use of microwave curing will be prepared;
 Cost of microwave oven vs. cost of autoclaves
 Infrastructure required
 Tooling costs
 Compatibility with

Existing infrastructure

Aircelle products / part families

Aircelle materials & processes
 Other uses for the equipment ?
DIRECTION / Date
22

Postcuring

Paint shop - drying
Ce document et les informations qu’il contient sont la propriété de Aircelle. Ils ne doivent pas être copiés ni communiqués à un tiers sans l’autorisation préalable et écrite de Aircelle.
Conclusion
Microwave curing has the potential to reduce the time, cost & energy required to produce
composite parts, however………..

Microwave curing / technology is completely new to Aircelle

Project timescales extremely speedy
Plan in place for a structured step by step approach

Initial trials show material will cure in the microwave

Next step is to try more cure cycles & more component geometries

Assessment of the repeatability & quality of the process is required

Validation of the cure process through mechanical testing & inspection of parts
Collaboration with Airbus UK & Frazer-Nash will accelerate understanding & optimisation of the
process

Simulation of the microwave curing environment to aid further exploitation of process

Optimisation of the cure process, with the possibility of further cure time reduction
Work is underway to assess the impact on our business

Realisation of savings

Applicability of current tooling

Applicability of parts / processes

Other areas where the technology could be used
DIRECTION / Date
23
Ce document et les informations qu’il contient sont la propriété de Aircelle. Ils ne doivent pas être copiés ni communiqués à un tiers sans l’autorisation préalable et écrite de Aircelle.
Thank you for listening………….
QUESTIONS?
DIRECTION / Date
24
Ce document et les informations qu’il contient sont la propriété de Aircelle. Ils ne doivent pas être copiés ni communiqués à un tiers sans l’autorisation préalable et écrite de Aircelle.