Demography and Intercontinental Spread of the

Transcription

Demography and Intercontinental Spread of the
Demography and Intercontinental Spread of the USA300
Community-Acquired Methicillin-Resistant
Staphylococcus aureus Lineage.
Philippe Glaser, Patrı́cia Martins-Simões, Adrien Villain, Maxime Barbier,
Anne Tristan, Christiane Bouchier, Laurence Ma, Michele Bes, Frederic
Laurent, Didier Guillemot, et al.
To cite this version:
Philippe Glaser, Patrı́cia Martins-Simões, Adrien Villain, Maxime Barbier, Anne Tristan, et
al.. Demography and Intercontinental Spread of the USA300 Community-Acquired MethicillinResistant Staphylococcus aureus Lineage.. mBio, American Society for Microbiology, 2015, 7
(1), pp.e02183-15. <10.1128/mBio.02183-15>. <hal-01312831>
HAL Id: hal-01312831
http://hal.upmc.fr/hal-01312831
Submitted on 9 May 2016
HAL is a multi-disciplinary open access
archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.
L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.
Distributed under a Creative Commons Attribution - ShareAlike 4.0 International License
crossmark
Demography and Intercontinental Spread of the USA300 CommunityAcquired Methicillin-Resistant Staphylococcus aureus Lineage
Philippe Glaser,a Patrícia Martins-Simões,b,c,d,e,f,g Adrien Villain,h Maxime Barbier,i,j Anne Tristan,b,c,d,e,f,g Christiane Bouchier,k
Laurence Ma,k Michele Bes,b,c,d,e,f,g Frederic Laurent,b,c,d,e,f,g Didier Guillemot,l Thierry Wirth,i,j François Vandeneschb,c,d,e,f,g
Institut Pasteur, Unité de Biologie des Bactéries Pathogènes à Gram-Positif, Paris, France; CNRS UMR3525, Paris, Francea; CIRI, International Center for Infectiology
Research, Lyon, Franceb; Inserm U1111, Lyon, Francec; Université Lyon 1, Lyon, Franced; École Normale Supérieure de Lyon, Lyon, Francee; CNRS UMR5308, Lyon, Francef;
CNR des Staphylocoques, Hospices Civils de Lyon, CBPE, Lyon, Franceg; Institut Pasteur, Bioinformatics Platform, Paris, Franceh; Laboratoire Biologie Intégrative des
Populations, Evolution Moléculaire, École Pratique des Hautes Etudes, Paris, Francei; Institut de Systématique, Evolution, Biodiversité, UMR-CNRS 7205, Muséum National
d’Histoire Naturelle, Université Pierre et Marie Curie, École Pratique des Hautes Etudes, Sorbonne Universités, Paris, Francej; Institut Pasteur, Genomics Platform, Paris,
Francek; Inserm UMR 1181 Biostatistics, Biomathematics, Pharmacoepidemiology and Infectious Diseases (B2PHI), Institut Pasteur, Versailles Saint-Quentin University, Paris,
Francel
P.G., P.M.-S., T.W., A.V., M.B., and F.V. contributed equally to this work.
Community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA) was recognized worldwide during
the 1990s; in less than a decade, several genetically distinct CA-MRSA lineages carrying Panton-Valentine leukocidin genes have
emerged on every continent. Most notably, in the United States, the sequence type 18-IV (ST8-IV) clone known as USA300 has
become highly prevalent, outcompeting methicillin-susceptible S. aureus (MSSA) and other MRSA strains in both community
and hospital settings. CA-MRSA bacteria are much less prevalent in Europe, where the European ST80-IV European CA-MRSA
clone, USA300 CA-MRSA strains, and other lineages, such as ST22-IV, coexist. The question that arises is whether the USA300
CA-MRSA present in Europe (i) was imported once or on very few occasions, followed by a broad geographic spread, anticipating an increased prevalence in the future, or (ii) derived from multiple importations with limited spreading success. In the present study, we applied whole-genome sequencing to a collection of French USA300 CA-MRSA strains responsible for sporadic
cases and micro-outbreaks over the past decade and United States ST8 MSSA and MRSA isolates. Genome-wide phylogenetic
analysis demonstrated that the population structure of the French isolates is the product of multiple introductions dating back
to the onset of the USA300 CA-MRSA clone in North America. Coalescent-based demography of the USA300 lineage shows that a
strong expansion occurred during the 1990s concomitant with the acquisition of the arginine catabolic mobile element and antibiotic resistance, followed by a sharp decline initiated around 2008, reminiscent of the rise-and-fall pattern previously observed
in the ST80 lineage. A future expansion of the USA300 lineage in Europe is therefore very unlikely.
ABSTRACT
To trace the origin, evolution, and dissemination pattern of the USA300 CA-MRSA clone in France, we sequenced
a collection of strains of this lineage from cases reported in France in the last decade and compared them with 431 ST8 strains
from the United States. We determined that the French CA-MRSA USA300 sporadic and micro-outbreak isolates resulted from
multiple independent introductions of the USA300 North American lineage. At a global level, in the transition from an MSSA
lineage to a successful CA-MRSA clone, it first became resistant to multiple antibiotics and acquired the arginine catabolic mobile element and subsequently acquired resistance to fluoroquinolones, and these two steps were associated with a dramatic demographic expansion. This expansion was followed by the current stabilization and expected decline of this lineage. These findings highlight the significance of horizontal gene acquisitions and point mutations in the success of such disseminated clones
and illustrate their cyclic and sporadic life cycle.
IMPORTANCE
Received 21 December 2015 Accepted 15 January 2016 Published 16 February 2016
Citation Glaser P, Martins-Simões P, Villain A, Barbier M, Tristan A, Bouchier C, Ma L, Bes M, Laurent F, Guillemot D, Wirth T, Vandenesch F. 2016. Demography and
intercontinental spread of the USA300 community-acquired methicillin-resistant Staphylococcus aureus lineage. mBio 7(1):e02183-15. doi:10.1128/mBio.02183-15.
Editor Alex van Belkum, bioMérieux
Copyright © 2016 Glaser et al. This is an open-access article distributed under the terms of the Creative Commons Attribution-Noncommercial-ShareAlike 3.0 Unported
license, which permits unrestricted noncommercial use, distribution, and reproduction in any medium, provided the original author and source are credited.
Address correspondence to François Vandenesch, [email protected].
S
taphylococcus aureus remains one of the most challenging and
costly sources of bacterial infection worldwide. It asymptomatically colonizes about one-third of the human population and
may cause infections with outcomes that range from mild to severe and are occasionally life threatening (1). Notably, it is the
most common causative agent of nosocomial infections and a
leading cause of death in hospitalized patients (2). Until the mid-
January/February 2016 Volume 7 Issue 1 e02183-15
1990s, methicillin-resistant S. aureus (MRSA) infections were reported exclusively in hospital settings and most hospitalassociated MRSA (HA-MRSA) diseases resulted from a limited
number of successful clones (3). However, in the beginning of the
2000s, MRSA infections began to be reported in healthy individuals without risk factors or discernible connections to health care
institutions (4, 5). These community-acquired MRSA (CA®
mbio.asm.org 1
Downloaded from mbio.asm.org on May 9, 2016 - Published by mbio.asm.org
RESEARCH ARTICLE
MRSA) strains had genetic backgrounds distinct from those of
traditional HA-MRSA strains. Moreover, international strains of
CA-MRSA belonged to a series of different lineages and specific
clones were predominant on different continents (6). The dominant CA-MRSA clone in the United States, referred to as the
USA300 North American (USA300-NA) MRSA clone in this
study, belongs to pandemic multilocus sequence type 8 (ST8) constituted by methicillin-susceptible S. aureus (MSSA) and MRSA
strains with the same pulsed-field gel electrophoresis type,
USA300. This epidemiologically successful clone carries the IVa
subtype of the staphylococcal cassette chromosome mec (SCCmec)
element, agr allele 1, arginine catabolic mobile element (ACME)
type I, and a set of virulence genes including lukS-PV/lukF-PV, sek,
and seq (7–10).
It is generally recognized that this USA300-NA MRSA clone
descended from an ancestral USA500-like MSSA strain by the
acquisition of various mobile genetic elements (MGEs) and
shows very recent clonal expansion (2, 11). These MGEs,
namely, SCCmec type IV carrying the mecA gene, S. aureus pathogenicity island 5 containing sek and seq, phage phiSA2 carrying the
Panton-Valentine leukocidin genes, and ACME type I, are
thought to contribute to the success and high virulence of the
commonly known USA300-NA MRSA strains (12–16). ACME
type I is found exclusively in the USA300-NA MRSA lineage (16–
21). It has been shown that the functional modularity (arginine
deiminase system [arc] and the speG gene, which encodes a polyamine resistance enzyme) plays a major role in the enhanced success of this clone during colonization and skin infections (22, 23).
In recent years, multiple studies have shown that the USA300-NA
MRSA clone has spread worldwide, with reports of outbreaks in
South America, the Middle East, the western Pacific, and Europe
(for a detailed review, see reference 24). Interestingly, in South
America, the most prevalent CA-MRSA is a USA300 variant, the
so-called Latin American variant or USA300-LV (i.e., ST8, spa
type t008, SCCmec type IVc, lukSF-PV⫹, arcA) present in Colombia, Venezuela, and Ecuador (24–26). It has recently been proposed that the USA300 MRSA lineage has evolved since the 1980s
into two parallel epidemics, one in North America with the acquisition of the ACME by the ancestral USA300 lineage, forming the
USA300-NA MRSA epidemic, and one in South America, with the
acquisition of a novel copper and mercury resistance (COMER)
element by the ancestral lineage (27).
In Europe, CA-MRSA epidemiology is characterized by clonal
heterogeneity, although the most common European strain is the
European clone (ST80-IV, pvl⫹) (28). This clone originally
emerged from a West African ancestor (29) and expanded in the
Mediterranean area, the Middle East, and North Africa, as many
of the first patients infected with this clone in Europe had histories
of travel to these regions. Although the prevalence of this “European” clone is relatively high in some countries, like Algeria and
Tunisia, with a widespread distribution in both hospital and community settings (28–30), in Europe, the prevalence of this clone, as
well as that of CA-MRSA in general, remains low (31, 32) and even
seems to be declining (33, 34). This decay is in keeping with the
calculation of a recent slow decrease in its effective population size
based on a Bayesian skyline model (29). However, the question
arose as to whether the CA-MRSA clone (USA300-NA or
USA300-LV) could replace ST80 CA-MRSA and expand in a worrisome scenario similar to the one observed in the United States in
the past decade. Consistent with this hypothesis is the fact that the
2
®
mbio.asm.org
USA300-NA MRSA clone has been reported to be present in many
European countries for several years (31, 32, 35–45) and is occasionally associated with infection clusters (46–48). A recent study
showed that an increase in CA-MRSA USA300 prevalence in 2013
in Geneva, Switzerland, was due to distinct importations from the
North and South American continents (49).
This study addressed the question of the USA300 lineage’s capacity to expand successfully in Europe by applying wholegenome sequencing to a collection of French USA300 CA-MRSA
strains responsible for sporadic cases, as well as micro-outbreaks,
over the past decade, followed by a comparison with available
genomes of USA300 CA-MRSA, USA300 MSSA strains, and other
ST8 isolates from the United States (50, 51). Genome-wide phylogenetic relationships and coalescent-based analyses showed that
the population structure of the French isolates reflects multiple
introductions of the USA300-NA MRSA clone. Furthermore, the
coalescent-based demography of USA300-NA lineage confirmed
its success in the late 1990s but also suggested a sharp decline
initiated around 2008, reminiscent of the rise-and-fall pattern observed in the ST80 lineage.
RESULTS
USA300 phylogeography and resistance makeup. Prior to phylogenetic reconstruction, we checked if the data set provided some
evidence of homologous recombination. We first made a visual
inspection of the concatenated single-nucleotide polymorphisms
(SNPs), and no contiguous SNPs consisting of three or more
SNPs, mirroring homologous recombination, were detected. In a
second step, neighbor nets were inferred in order to detect putative recombination signatures that would result in networks
rather than trees. No major splits were found, and the pairwise
homoplasy index (PHI) test failed to detect recombination signatures (P ⫽ 0.475). We then performed whole-genome phylogenetic analysis of the 498 ST8 isolates (including MRSA, MSSA, and
USA300-LV and USA300-NA MRSA isolates) obtained from
France (n ⫽ 67) and the United States (n ⫽ 431) within a time
span of 15 years (see Table S1 in the supplemental material). A
total of 12,840 SNPs were used to generate a maximum-likelihood
(ML) tree that shows, as previously reported, that strains from San
Diego (51) and New York City (50) are interspersed (Fig. 1). The
closest relative sister group of the USA300-NA lineage corresponded to seven strains, all isolated from the New York City area.
These seven isolates carry the COMER element characteristic of
the USA300-LV South American clade (27) and belong to this
lineage. Adding French USA300 CA-MRSA strains to the phylogenetic analysis did not unravel any new branching pattern or
hidden sublineages and revealed that all of the French isolates
belong to the USA300-NA lineage. Among the U.S. isolates, a
fluoroquinolone-resistant lineage with the same mutations in
gyrA (Ser84Leu) and parC (Ser80Tyr) has emerged within the
USA300-NA MRSA clone and disseminated globally (Fig. 1). We
observed a similar distribution in France, with 18 fluoroquinolonesusceptible strains, including 10 from an outbreak in Le Puy-en-Velay
(a town in central France) (47) and 46 resistant isolates, including
the 28 isolates from an outbreak in a long-term care facility (Paris
16th District) showing the same two mutations in the gyrA and
parC loci. Plasmid analysis showed that all except three French
isolates carry plasmids related to previously described plasmid
p18805-p03 (52). This plasmid encodes multiple antibiotic and
heavy metal resistance genes [aminoglycosides, ant(6)-Ia and
January/February 2016 Volume 7 Issue 1 e02183-15
Downloaded from mbio.asm.org on May 9, 2016 - Published by mbio.asm.org
Glaser et al.
ST20130343@
ST
@2013
2013
ST20130343@
ER
E
RS
R
S
S0
093095@2010
ERS093065@2011
ER
ERS093063@2011
ER
ERS092791@
ERS092791@
ER
@2007
2007
U
USA300
NA
Other ST8
EER
RS
0993
ER S0
ER
30
ER SS00993 00088@
ER
30
S
S0
ER 0993 00099@ @20
ER
201
SS0 30
100
ER 092 02244@ @20
ER
2
@ 01100
S0
S
2
ER 099229 997@ 20
ER
@ 0110
S0
S
ER 099228 91155@ 20 0
ER
1
10
@
S0
S
ER 099229 88888@ 2200110 0
ER
S
S0
90 @220 0
ER 099330 033@
ER
00
09
01 @20
S
S0
200 9
ER 099229 155@
ER
90 @20 099
S0
S
ER 099228 055@
ER
0
09
@
9
83
S0
S
200
20
ER 099228 311@
ER
09
8332 @22000 9
S0
S
2@
09
ER 092
ER
S0
S09 78 @22000 9
09
9228 0@
ER
ER
8009 @22000 9
S
S0
099
ER 09281 9@
ER
@20
2
S
S00
0@ 00099
92
ER
ER
200
90 @20
S0
S0
6@
92
@ 099
ER
ER
S09 770@ 2200009
S0
9229
9
@
ER
ER
S009 95500@ 2200008
S
9229
@20
ER
ER
201 8
S009 95511@
S
@220 100
9228
ER
ER
S19 83300@ 01100
S1
@
9553
ER
ER
3889 2009
S
S00
9@
@220
92
ER
ER
80
0009
S
S00
4@
9
@20
92
200
99
099
6@
@20
201
100
USA500
USA
USA5
SA500
A500
ERS092771@
ERS092771@
ER
@2
2009
009
ERS092764@
ERS092764@
ER
@2009
2009
ERS092785
ERS092785@
ER
@2009
2009
ERS09279
ERS092790@
ER
0@
@2
2009
009
ERS19539
ERS195390@
ER
0@
@2
2009
009
ERS0929
ERS092939@
ER
39@
@2010
2010
ERS092
ERS092940@
ER
940@
@2010
2010
ERS092
ERS092937@
ER
937@
@201
2010
0
ERS19
ERS195407
ER
5407@
@2010
2010
ERS09
ERS092952@
ER
@2
2010
010
ERS19
ERS195409@
ER
@2010
2010
ERS1
ERS19
ER
9540
5408
8@
@2010
2010
ERS0
ERS09293
ER
8@
@20
2010
10
ERS09291
ER
ERS0
1@2009
ERS09295 @2009
ER
ERS0
6@2010
ERS09295 @2010
ER
ERS0
@2
2008
008
ST2012 7@
ST
ST2
1514@
@2
RCH
RC
RCH
201
012
2
S33
S
S3
3@
@200
ERS
ERS09
ER
5
093
309
098
8@
@2
201
ERS092
ER
ERS
011
1
09275
758
8@
@200
ERS0
ER
2009
ERS
9
092
927
768
68@
@2
ERS092
ER
ERS
200
009
0927
9
760
60@
@2
ERS
ERS092
ER
200
009
0928
9
861
61@
ERS
ER
ERS
@2
200
009
19
195
9
542
429
9@
ERS
ER
ERS
@2
201
093
09
011
310
1
100
0@
ERS
ERS
ER
093
09307 @2011
076
ER
ERS09
6@
@2
S09
201
011
307
1
ER
ERS09
@201
S0929 5@
293
1
33@
ER
ERS
3@
@201
S0
092
0
978@
ER
ERS
@2
S0
09
20
01
92
10
29
0
97
ER
ERS0
79
9@
S09
@20
200
92
29
06
93
ER
ERS
6
36
6@
S0
@
09
92
29
1
932@ 2010
ERS0
ER
S0992 32
@20 0
01
288665 2
10
ERS0
ER
0
5@
S092
@20
200
099
ERS0
ER
S092 866@
@2
00099
880@ 20
ERS
ER
S009
@2
0009
ER 92288887 20
ER
S
S00992
7@
@220 9
28
ERS0
ER
S09 88811@ 00099
RC 92288776 @2009
RC
H
6@ 09
200
ER I36@ @20
ER
S
S009
200 099
9330 20
ER
ER
0773 055
S00
S
3@
@220
93
ER
ER
11
0111
S0
S
@20 1
ST 09933009 1@
ST
20
12 977@
@220 1111
ST
ST
05
01
2
20
ST 01133007 59@ 111
ST
2
20
20
78
12
ST 01122005 822@
ST
220
55 @22001
ST 01122006 588@
ST
@220 133
20
01
12 63388@
ST
ST
@20 122
07
20
16
12
ST
ST
12
@
14
20
89 2012
ST
ST
13
@20
20
01
13
31
ST
ST
12
@20
05
20
201
ST
ST
20
13
13
ER 2012 0514 @20 3
ER
13
S
S0
ER 099330 1949 @20
ER
S09 0881 @
13
ER S0
ER
93
@2 2012
S009 3007 1@
1
ER S
ER
9330 799@ 20
0111 2
ER SS11995 09966@ @22001 1
ER
54
ER SS0092 41122@ @22001 111
ER
ER SS00992 94 @20 111
ER
S09 2995 9@
10
ER S0
ER
58 @20
2
SS009 922778 8@
@ 0110
9227 833@ 22001 0
7887 @20
2 100
7@
@ 00099
22000
099
RCH I56@2007
2010
@2010
RS093046@
ER
E
ERS093046@
2007
@2007
S 6@
S5
CH S56@
R
RC
RCH
092900@2009
S0
S
RS
R
ER
E
2010
093043@2010
S
S0
R
RS
E
ER
010
2010
@2
RS093047@
E
ER
ERS093047@
2006
@2006
CH I44@
R
RC
RCH
2007
@2007
S 0@
S6
CH S60@
R
RC
RCH
009
2009
@2
7@
RS092877@
E
ER
ERS09287
010
2010
@2
89@
RS093089@
E
ER
ERS0930
2009
@2009
789@
RS092789@
E
ER
ERS092
009
2009
@2
784@
RS092784@
E
ER
ERS092
010
2010
@2
3003@
RS093003
E
ER
ERS09
2010
@2010
RS092995@
E
ER
ERS09
2011
@2011
1@
3071
9307
RS09
E
ER
ERS0
2010
@2010
2@
3092
9309
RS09
E
ER
ERS0
009
2009
@2
9@
2839
9283
RS09
E
ER
ERS0
009
2009
@2
7@
RS09285
E
ER
ERS0
2009
@2009
0@
RS09284
E
ER
ERS0
2011
@2011
84@
484@
1124
2
T20112
012
S
ST
ST20
201
@2
3@
53@
055
205
3
012
13
T201
S
ST
ST2
201
@20
2@
3068
013
9
T201
009
S
ST
ST2
200
@2
5@
805
280
0
092
10
RS09
E
ER
ERS
201
@20
4@
0183
9
010
009
200
T201
S
ST
ST2
@2
18@
818
9
0928
009
RS092
200
ERS
E
ER
@2
74@
774
9
927
092
009
RS0
200
ERS
E
ER
@2
59@
759
0
927
092
010
201
RS0
ERS
E
ER
@2
6@
016
0
10
09301
201
RS093
@20
ERS
E
ER
7@
007
9
300
093
2009
RS09
@200
ERS
E
ER
8@
798
1
279
092
2011
RS09
@201
ERS
E
ER
9@
99@
02
30
309
@20
S09
6@
ERS09
ER
06
20
0
02
00
30
00
03
20
00
@2
20
3@
T2
33
HT
0
73
00
07
00
10
20
01
00
@2
20
0@
T2
40
0
HT
74
00
07
00
20
010
01
@2
1@
51
T20
25
9
HT
02
0
09
10
0
01
@20 9
8@
T20
38
HT
83
28
92
20009
@20
S09
0@
9
ERS0
ER
288660 @2200009
S0992
ERS0
ER
837@ 22001100
@
S0092
09
ERS
ER
027@ 2009
@
S0093 40055@
ERS
ER
00099
54
@220 9
S11995 88855@
09
ERS
ER
28
200
@20
S0992 895@
099
ERS0
ER
200
92
@20
9
6@
S
S00
0009
81
ER
ER
92
@220 0099
2@
S0
S0
ER 92288222 @20
ER
9
0
09
S
S009 820@
ER
ER
92
@20 100
1@
S0
S0
01
8771 20
ER
ER
9228
@2
S09 05544@ 22001100
S0
ER
ER
@
9330
0
S09 055@ 2200110
S0
ER
ER
@ 100
93
0@
S0
S0
05 @22001 0
ER
ER
93
9@ 0110
S00
S
2
41 @20
9
ER
ER
95 233@
0009
S11
S
@220 09
ER 09933002 0@
ER
S0
S
@20 100
ER 09285 8@
ER
S
S0
87 @22001 1
ER
ER
111
92
8@
S00
S
9448 @20 1
11
1
ER 099229 0@
ER
S0
S
11 @20 099
ER 09933
ER
9@ 20
200 1
S0
10
@
RS
0111
ER
E
93 822@
88 @220 09
S0
S0
09
ER 099228 722@
ER
07 @20 099
S
S0
00
ER 099330 883@ 20
ER
S
S0
@2 00099
ER 092 88899@ 20
ER
S
S0
@2 00099
2
ER 099228 808@ 20
ER
@ 00099
SS0
2 100
ER 09922 80066@ @20
ER
S0
S
01
28
ER 0992 80077@ @220
ER
SS0 28
92
699@
ER S0
ER
S09 2996
ER SS00992
ER
ER
ER
USA300
USA3
U
US
SA3
300
00
LV
L
V
*
*
*
099
200
20
@ 00077
1@
2
7881 @20
099
9227 888@ 20
200
@ 00099 2
S09 922778 7@
RS0
67
20
2 0002
EER
S0
S09 2776 @ 20
@2 1
ER SS00992 85555@ 3@
ER
9228 2003 2200111
ER S0
ER
S09 033002 0@
@
11
ER 00
ER
0
0770 @20
HTT2 099330 42288@ 2010
S0
S
@
10
10
ER 199554 933@
ER
S1
S
09 @20 100
ER 099330 4@
ER
01
95 @220 0
S0
S
10
ER 09922 466@
ER
94 @22001 0
S
S0
10
ER 099229 1@
ER
S0
S
41 @22001 1
11
ER 195 100@
ER
201
S
S1
41 @20
ER 199554 088@
ER
11
S
S1
10 @20 1
ER 099331 7@
ER
11
S0
S
201
10 @20
ER 093
ER
3@ 01111
S0
S
ER 09311 6@
ER
@220 100
S
S0
201
ER 09310 7@
ER
@20
47 2009
S0
S
ER 09922994 8@
ER
@ 100
S0
S
01
90
ER
ER
@220 100
92
6@
S
S00
01
08
ER
ER
93
@220
S
S00
577@ 01100
ER 933005 @20
ER
2
6@ 01100
S09
S0
ER 9305 @20
ER
2
4@ 100
S0
S0
ER 9304 @20
ER
201
9@ 100
S0
S0
ER
ER
300449 @20
201
S0993 04488@
9
ERS0
ER
30
20009
@20
S0993 79966@
9
ERS0
ER
20009
@20
099227 4@
S0
S
9
R
90
E
ER
20009
@20
S092 90077@
ERS0
ER
29
6
06
S0992 @200
9
ERS0
ER
09
00
20
S 7@ @2
S4
3@
03
RCH 28
RC
9
09
00
9280 @2
20
S09
9@
ERS0
ER
99
0
79
10
27
01
92
20
09
S0
@2
3
ERS
ER
03
041@ 2
00
@20
093
4@
S0
24
12
ERS
ER
01
0
30
03
00
20
@201
T2
4@
HT
2
2012
09299 3@
S09
@201
ERS
ER
200
1
2
012
2011
T201
@201
S
ST
ST2
2@
112
09311 @2011
RS093
E
ER
ERS
4@
104
310
1
093
09
2011
RS
E
ER
ERS
@201
82@
082
9
0930
009
200
RS093
E
ER
ERS
@2
91@
391
3
9
195
009
200
RS
E
ER
ERS
@2
12@
812
928
0
092
010
RS0
201
E
ER
ERS
@2
1@
991
299
09
092
0
S
R
010
E
ER
ERS
201
@2
1@
811
281
092
9
RS09
009
E
ER
ERS
200
@2
3@
823
282
09
092
S
9
R
E
ER
ERS
009
200
@2
5@
825
09282
RS092
E
ER
ERS
009
2009
@2
3@
9539
1
S
R
E
ER
ERS1
2009
@2009
4@
RS09282
E
ER
ERS0
2010
@2010
7@
9296
0
S
R
E
ER
ERS0
2010
@2010
6@
RS09296
E
ER
ERS0
2010
@2010
5@
2965
9296
RS09
E
ER
ERS0
2010
@2010
7@
2977
9297
RS09
E
ER
ERS0
2006
@2006
S 3@
S4
CH S43@
R
RC
RCH
003
2003
@2
CH I15@
R
RC
RCH
003
2003
@2
S 8@
S1
CH S18@
R
RC
RCH
2005
@2005
CH I33@
R
RC
RCH
005
2005
@2
CH I34@
R
RC
RCH
011
2011
@2
8@
ERS093088@
ER
ERS09308
010
2010
@2
7@
ERS093087@
ER
ERS09308
2009
@2009
RS195394@
E
ER
ERS195394
2009
@2009
ERS092835@
ER
ERS092835@
*
Other ST8
ERS
ERS0
ER
093
930
011
11@
@201
ERS
ERS093
ER
2010
0931
0
117
17@
@2
ERS
ERS19
ER
201
010
195
0
541
416
6@
@2
201
ERS
ERS09
ER
010
0
093
301
010
0@
@201
2010
ERS
ERS09
ER
0
093
302
020
0@
@2
200
ERS
ERS093
ER
007
7
0930
018
18@
@2
201
010
ERS
ERS0
ER
0
093
930
042
42@201
010
ERS0
ERS09303 @2
ER
0
5@
@2
2010
010
ERS0
ERS09
ER
9277
2779
9@
@2009
2009
ERS0
ERS09276
ER
9@
@2
2009
009
ERS0
ERS09292
ER
5@
@2
2009
009
ERS0
ERS09
ER
9292
2924
4@
@2010
2010
ST200
ST2009
ST
91284
1284@
@2009
2009
ERS09
ERS092927@
ER
@2010
2010
FPR37
FPR3757@
FP
@2
2000
000
HT2003
HT200
T 30207@
0207@
@200
2002
2
HT2003
T
0204@
@20
2002
02
ST20130
ST20130139
ST
139@
@2
2013
013
ERS09276
ERS092765@
ER
5@
@2
2009
009
ERS092773
ERS092773@
ER
@2
2009
009
ERS092766
ERS092766@
ER
@2
2009
009
ERS092981@
ERS092981@
ER
@2010
2010
RCH
RCH I35@
RC
@2005
2005
ERS092870@
ERS092870@
ER
@2
2009
009
ERS092971@
ERS092971@
ER
@2
2010
010
RCH
RCH S35@
RC
S @2005
S35
2005
RCH
RCH I58@
RC
@2
2007
007
*
**
2009
@2009
ERS092867@
ER
ERS092867@
2009
@2009
ERS092868@
ER
ERS092868@
09
2009
@20
ERS092834@
ER
ERS092834@
2010
@2010
ERS093085@
ER
ERS093085@
ERS092775@
ERS092775@
ER
@2009
2009
2010
@2010
ERS093052@
ER
ERS093052@
2003
@2003
RCH
RCH I19@
RC
2005
@2005
S 6@
S3
RCH
RCH S36@
RC
ERS195423@
ER
@2010
2010
ERS195423@
05
2005
@20
S 4@
S3
RCH
RCH S34@
RC
009
2009
@2
ERS092802@
ERS092802@
ER
2009
@2009
ERS092797@
ERS092797@
ER
ERS195420@
ER
ERS195420@
@20
2010
10
ERS093053@
ER
ERS093053@
@20
2010
10
ERS195422@
ER
ERS195422@
@2010
2010
ERS195424@
ER
ERS195424@
@2010
2010
ERS195421@
ER
ERS195421@
@2010
2010
ERS093051@
ER
ERS093051@
@2010
2010
ERS092941@
ER
ERS092941
@2
2010
010
ERS092942@
ER
ERS09294
2@
@2
2010
010
ERS092953@
ER
ERS09295
3@
@2
2010
010
ERS092864@
ER
ERS0928
64@
@2
2009
009
E
ER
ERS093
RS093114@
114@
@2009
2009
E
ER
ERS093
RS093116@
116@
@2
2010
010
ER
E
ERS19
RS195400
5400@
@20
2009
09
E
ER
ERS19
RS195399@
@2009
2009
E
ER
ERS09
RS092848@
@2009
2009
E
ER
ERS1
RS1954
9540
01
1@
@2009
2009
E
ER
ERS0
RS09284
7@
@2009
009
RCH I57@ 2
RC
RCH
@2007
2007
ERS09310
ER
ERS0
1@2011
ERS09308 @2011
ER
ERS0
0@
@2
2011
011
S
ST
ST2
T201
013
3176
3@
@
S
ST
ST2
201
20
T2012
13
3
1100@
@201
S
ST
ST2
T201
013
2
3173
9@
@20
ERS093
ER
ERS
201
13
09301
3
014
4@
@201
ERS09
ER
ERS
2010
093
0
300
006
6@
@201
ERS0
ER
ERS
2010
093
0
930
004
04@
@2
RCH
RC
RCH
201
010
S44
S
S4
0
4@
@2
200
ERS
ER
ERS
006
6
09
093
302
028
8@
ERS
ER
ERS
@201
093
09
303
0
038
8@201
ERS
ER
ERS
09276 @20
092
10
0
761
ERS09
ER
@200
S0927 1@
2009
277
9
72@
E
ER
ERS
RS092
@200
0928 2@
9
845
45@
ERS
ER
@200
S0
092
9
846@
ERS0
ER
@2
S09
20
92
00
28
09
86
9
ERS
ER
63
3@
S0
09
20
9284 @2
00
09
9
RCH 28
RC
44
4@
@2
20
S38
S
00
09
8@
ERS0
ER
2006 9
S0992 @2
6
2889 00
ERS0
ER
S092 977@
@20
20009
ERS
ER
94
9
S0092
4@
@20
20110
ERS0
ER
S0992 945@
@220 0
29
01100
ERS0
ER
S0992 94433@
@20
2
29
ERS0
ER
S09 95555@ 01100
20110
ER 93300221 @20
ER
S0
S0
1@
0
@20
92
201
ST
ST
89
20
8@ 100
ER 1312 @20
ER
09
S09
S0
9330 84@
ER
ER
0002
20
S
S0
@20 13
ER 09283 2@
ER
S0
S
@ 10
ER 09922882 3@
ER
S
S00
266@ 22000099
92
@20
ER
ER
82
S0
S
09
ER 09279 9@
ER
@20 09
S
S0
09
ER 09291 5@
ER
@20
200
S0
S
099
ER 099227 0@
ER
76 @22000
S
S0
099
ER 099227 622@
ER
77 @20
S0
S
200
ER 092 777@
ER
09
S0
S
78 @20
200 9
ER 099227 2@
ER
09
@20
S
S0
200 9
ER 099330 76633@
ER
@220 099
S0
S
ER 093 02255@
ER
@ 00099
S
S0
ER 099330 036@ 20110
ER
@
S
S1
0
ER 1995 02222@ 2010
ER
S009 5441 @20 10
ER S
ER
17
10
S09 922997 7@
ER S0
ER
76 @22001
S0 922998 6@
@220 100
ER S0
ER
83
S0 9297 3@
@20 01100
ER S0
ER
S19 9282 5@
S1
1
10
@
9553 8@ 20 0
3992 @20 10
2@
@
20
200 09
099
*
*
*
ERS092993@
ERS092993@
ER
@2010
2010
ERS093067@
ERS093067@
ER
@2
2011
011
ERS093037@
ERS093037@
ER
@2
2010
010
E
ER
R
RS
S0
S
093029@
@2
2010
010
E
ER
R
RS
S
S0
092928@2010
E
ER
R
RS
S
S0
092934@2010
ER
E
RS195406@
@2010
2010
ERS195406@
RS093094@2010
ER
E
092929@2010
S0
ERS
From outer to inner circle
First circle : Fq resistance mutation
*
3
2013
@201
T99580@
ST99580@
ST
S
@2013
ST20130551@
ST
ER
ER
S09
ER
ER S0
S09 933006
ER
ER S0
SS0 9330 600@
ER
ER 0993 05588@ @220
30
01
S1
S
ER
ER 1995 05599@ @20
2 111
54
S
S0
@ 01100
2
ER
ER 099330 42255@ 20
@ 01100
S0
S
2
ER
ER 099228 06611@ 20
@2 01100
S0
S
ER
ER 099229 89999@ 20
S009 9001 @220 01111
S
93
ER
ER
1@ 00
S
S0 3110 @220 099
00
ER
ER 099331 033@
10 @20
S
S0
201 099
ER
ER 099228 022@
S
S0
81 @20 100
ER
ER 099228 144@
11
81 @220 11
S0
S
00
ER
ER 092 133@
S09 82 @22000 099
S0
9228 1@
ER
ER
8551 @22000 099
S
S0
09
ER
ER 09922885 1@
@20
200 9
S00
S
92 522@
@2 099
ER
ER
S
S009 853@ 20
0009
9228
ER
ER
8669 @22000 9
S0
S0
099
9@
92
@
ER
ER
S
S119 884@ 2200009
9
9554
@
ER
ER
S1
S19 40033@ 22000099
9554
@2
ER
ER
00
S1
S19 40044@ 20
9554
@20 099
ER
ER
S009 40022@
S
09
@220 09
9228
ER
ER
89
00
96
09
S0
S0
6@
@220 9
92
ER
ERS0
0009
S0992 902@
9
@20
29
200
ER
ERS0
099
S0993 92222@
@20
20110
30
ER
ERS0
0
S0993 00055@
@20
20110
30
ER
ERS
0
S0093 01122@
@2
01100
013@ 20
ER
ERS
S0092
@
985@ 22001100
ER
ERS0
S0992
299886 @2200110
ER
ERS
0
6@
S0
@20
09
201
92
29
10
98
84
ER
ERS1
4@
@20 0
S19
95
53
10
1
39
0
95
ER
ERS
5@
@2
S1
19
2009
95
53
396@ 00
9
ER
ERS1
@2
S195 96
2009
397@ 00
9
ER
ERS09
@2
S09
20
00
285
09
9
6@
ER
ERS
@200
S09
2009
0928
283
9
36@
6@2
ERS
ERS
ER
092
09284 @200
009
9
841
1@
ERS
ERS
ER
@200
2009
09
092
284
9
843
3@
ERS
ERS
ER
@200
09
093
9
302
026
6@
@201
ERS
ERS092
ER
0928
0
879
79@
@200
ERS
ERS092
ER
2009
09287
9
873
3@
@2
ERS
ERS09
ER
200
009
092
9
287
874
4@
@2
200
ERS
ERS09
ER
009
9
092
287
875
5@
@2
200
ERS
ERS09
ER
007
7
092
297
972
2@
@2
201
010
ERS
ERS09
ER
0
092
297
974
4@
@2
201
010
ERS
ERS092
ER
0
0929
982
82@
@2
201
010
ERS0
ERS09
ER
0
9297
2973
3@2010
010
ERS0
ERS09306 @2
ER
8@
@2011
2011
ERS1
ERS19542
ER
6@
@2011
ERS0
ERS09308 2011
ER
4@
@2
2010
010
ERS0
ERS09
ER
9306
3069
9@
@2011
2011
ERS19
ERS195427@
ER
@2011
2011
ERS09
ERS093030@
ER
@2010
2010
ERS09
ERS093031
ER
3031@
@2010
2010
ERS092
ERS092792@
ER
792@
@2009
2009
ERS092
ERS092786@
ER
786@
@2
2009
009
ERS0930
ERS093090@
ER
90@
@2010
2010
ERS09306
ERS093066@
ER
6@
@2
2011
011
ERS092992
ERS092992@
ER
@2
2010
010
ERS093001
ERS093001@
ER
@2
2010
010
*
099
22000
@ 00099
5@
2 099
8115 @20
9228 188@ 20
200
@ 01100
S0
S09 922991 3@
2
93 @20
ER S0
ER
09
S09 922779 6@
ER S0
ER
@20 1100
S09 9292 9@
19 @20 0
ER S0
ER
S0 922991 8@
10
88
201 0
ER S0
ER
S09 2998 @20
0110
ER SS00992 99999@ 20
ER
@2 1100
9229 988@
ER
ER
09
99
S0
S
@20 10
10
ER 099229 7@
ER
98 @20 100
S0
S
ER 09922 155@
ER
41 @22001 9
S
S0
09
ER 199554 144@
ER
41 @22000 9
S
S1
09
ER 199554 4@
ER
S
S1
85 @22000 9
ER 09922
ER
1@ 0009
S
2
S0
80 @20
ER 092 944@
ER
099
S
S0
79 @20
200 0
ER 099227 0@
ER
10
S0
S
201
@20
ER 09280 0@
ER
0
0110
S0
S
ER 09296 3@
ER
@220 100
S
S0
41
20
201
ER
ER
@
95
0
4@
S
S11
9664 2200110
ER
ER
@ 100
9229 0@
S09
S0
01
ER 09300 0@
ER
@220 0
S0
S
9990 20110
ER
ER
9229 9@
@
S0
S09
099
ER 92299889 @20
ER
200
S09 894@ 09
S0
ER
ER
92
@20 9
2@
S0
S0
ER 9289 @20
ER
20009
3@
14
14
S0
S0
ER 92288993 @20
ER
S09 0293
13
ERS0
ER
@20 3
14
1705 20
ST20
ST
20113
13
@
1@
ST20 1331100661 2013
ST
201
59@ 11
ST20
ST
20
1301
14@ 1
1
ST20
ST
2011
1114
57@ 12
ST20
ST
20
1114
95@ 11
ST20
ST
011
20
2
1208 1@
61@ 11
ST20 12
ST
56
011
20
2
1125 1@
01
20
31@
ST2
ST
23
3
22
12
11
201
2013
01
20
97@ 13
ST2
ST
3
1397@
201
@20
9@
T2013
ST2
S
ST
3
3139
2013
013
@201
8@
T201
ST2
S
ST
2
3139
013
@201
T201
3@
ST2
S
ST
93@
059
2
305
012
013
201
@2
T201
3@
ST2
S
ST
055
3
013
T2013 @2
201
ST2
S
ST
23@
3
T2310 @201
2013
ST2
S
ST
12@
2
2012
T4880
ST4
S
ST
@201
2@
3055
2
013
12
T201
201
ST2
S
ST
@20
7@
3055
2
013
12
T201
201
ST2
S
ST
@20
6@
3059
013
2
T201
012
201
ST2
S
ST
@2
8@
548
054
130
013
T20
ST2
S
ST
2012
@2012
49@
549@
1305
T20130
ST20
S
ST
2012
@2012
55@
555@
1305
T20130
ST20
S
ST
012
2012
@2
58@
558@
1305
T20130
ST20
S
ST
014
2014
@2
25@
825@
1308
T20130
ST20
S
ST
2013
@2013
5@
0595
3059
T2013
ST201
S
ST
2013
@2013
5@
0685
3068
T2013
ST201
S
ST
2013
@2013
0559@
30559
T2013
ST201
S
ST
2013
@2013
56@
30556
T201305
ST201
S
ST
013
2013
@2
60@
30560
T201305
ST201
S
ST
2013
@2013
T20130546@
ST2013
S
ST
2013
@2013
554@
T20130554
ST20130
S
ST
13
2013
@20
97@
T20130597@
ST201305
S
ST
2
2012
@201
50@
T20130550
ST201305
S
ST
013
2013
@2
4@
T20130684@
ST2013068
S
ST
2013
@2013
T20130594@
ST20130594@
ST
S
2013
@2013
T20130547@
ST20130547@
S
ST
2009
@2009
ERS092817@
ER
ERS092817@
2009
@2009
ERS092819@
ER
ERS092819
010
2010
@2
3@
ERS093083@
ER
ERS09308
009
2009
@2
62@
ERS092862@
ER
ERS0928
009
2009
@2
98@
ERS195398@
ER
ERS1953
2010
@2010
970@
ERS092
ERS092970@
ER
010
2010
@2
2980@
ERS092980
ER
ERS09
010
2010
@2
3045@
ERS09
ERS093045
ER
2003
@2003
RCH I18@
RC
RCH
2003
@2003
RCH I21@
RC
RCH
2006
@2006
S 9@
S4
RCH S49@
RC
RCH
2010
@2010
0@
ERS09304
ER
ERS0
2010
@2010
4@
9303
0
ERS
ER
ERS0
003
2003
@2
5@
S15@
S
RCH S1
RC
RCH
005
2005
@2
9@
S
S2
S29@
H
RC
RC
RCH
7
07
20
200
S @
S59
9
RCH
RC
RCH
009
200
@2
2@
912
291
092
9
009
ERS09
ER
ERS
200
@2
0@
920
0
09292
ERS092
ER
ERS
2010
@201
6@
291
0
09 916 2
010
ERS092
ER
ERS
@201
17@
917
929
0
092
010
201
ERS0
ER
ERS
@2
921
9
92921@ 200
092
ERS0
ER
ERS
@2009
9@
909
0
09290 @2
010
ERS092
ER
ERS
3@201
913
0
291
092
09
2010
@201
ERS
ER
ERS
4@
914
9
09291 @200
092
009
ERS
ER
ERS
9@2 9
859
285
09
092
2009
@200
8@
ERS
ER
ERS
9
285
09
00
20
S09
@2
8@
ERS09
ER
3
77
13
01
20
092
S0
@2
ERS
ER
068@ 13
20
0130
69@ 01
3
ST2
ST2
ST
00
2
2013
13
70@ 11
ST20
ST
20
1300
92@ 06
06
ST20
ST
12
11
@20
ST
ST20 CH I48 20
01100
R
RC
@2
959@ 20
01100
92
@2
S00
1@
ER
ERS
01100
299661 20
@2
S00992 622@
0
ERS
ER
2996 @2200110
92
09
3@ 100
S0
ER
ERS
299663 @20
201
1@ 100
S00992
01
ERS 9293
ER
@220 100
0
5@
S0
S
01
93
ER
ER
92
@220 11
0@
11
S0
S0
9330
ER
ER
@20
9229
55 2006
S009
S
R
E
ER
17
@
2@
11
07
20
H I4 @20 5
ST
ST
RC I59@
RC
0005
H
@220 033
9@
RC
RC
200 7
H I2 0@
@20
07
RC
RC S2
200 3
@20
H S 7@
03
0
RC
RC
S
@20 00066
H S5
1@
RC
RC
S2
S
@220 1
H
RC H I49@ 2200111 6
RC
@
RC 105@ 20006
RC
@ 09
09
8@
93
S0 H I3 @20 099
S0
ER RC
ER
00
RC 89900@ 20
@2 01100
9228 1@
2
0
S009 8991 @20
S
0110 0
ER 099228 322@
ER
03 @220 10
S0
S
1
ER 099330 333@
ER
03 @20 10
S0
S
ER 099330 03399@ 20 1
ER
S
S0
1
11
@
ER 099330 41188@ 20 100
ER
SS0
@ 01
2 100
ER 199554 06622@ @20
ER
S1
S
30
201
ER 0993 01177@ @20
ER
SS0 9330 1@
91
ER S0
ER
S09 3009
93
ER S0
ER
S09
ER
ER
Third circle : Methicililin resistance
Susceptible
Susceptible
Resistant
Resistant
Second circle : ACME
Absence
Fourth circle : Year of isolation in blue gradients
Darkest blue (2014) Lightest blue (2000)
Putative intercontinental transmission event
*
FIG 1 Phylogenetic reconstruction of ST8 and its derived USA300 lineage. ML tree based on 498 genomes and a total of 12,840 concatenated SNPs, rooted by
Presence
using distantly related MSSA strain ERS092996. Branch colors indicate the geographic origins of the strains: red for New York State; yellow for California; green
for Minnesota, and blue for France. Outer circles represent ACME and antibiotic resistance profiles, whereas the inner circle represents the years of isolation of
the strains. The stars correspond to 12 predicted independent intercontinental USA300-NA CA-MRSA transfers from North America to France. The different
assignments in the ST8 “sublineages” are also indicated by colored areas within the circular tree. Fq, fluoroquinolone.
aph(3=)-III; beta-lactams, blaZ; macrolides mph(C); macrolideslincosamides-streptogramin B, msr(A); cadmium, cadD and
cadX]. These plasmids showed almost 100% nucleotide sequence identity indicative of a single origin but different regions of deletion. Similar plasmids are also present in the vast
majority of the American isolates (50, 51) but absent from the
strains of the USA300-LV lineage. It is therefore likely that an
ancestor of this multiresistance plasmid was acquired by the
January/February 2016 Volume 7 Issue 1 e02183-15
common ancestor of the USA300-NA clone and contributed to
its expansion. The 28 isolates from the outbreak in a long-term
care facility (Paris 16th District) carried in their chromosome a
3.2-kb transposable element containing the dfrG gene, which
encodes a dihydrofolate reductase conferring trimethoprim resistance.
Temporal Bayesian analysis reveals the complexity of
USA300 demography. In a second step, we used the Bayesian co®
mbio.asm.org 3
Downloaded from mbio.asm.org on May 9, 2016 - Published by mbio.asm.org
Intercontinental Phylogeography of USA300
104
Effective population size
Acquisition of fluoroquinolone resistance
1998
103
102
1996
101
Acquisition of ACME
+ Methicillin resitance
1960
1970
1980
1990
2000
2010
Time
FIG 2 Bayesian skyline plot indicating population size changes in the USA300
lineage over time with a relaxed molecular clock. The shaded area represents
the 95% confidence interval, and the arrows point to major phenotypic events
driven by ACME and antibiotic resistance that might have contributed directly
to the success of the USA300-NA MRSA lineage.
alescent analysis implemented in BEAST (53) to generate a phylogenetic time tree and to derive estimated dates for the common
ancestors of the strains (see Fig. S1 in the supplemental material).
The tree was calibrated by using the sampling dates of the isolates
ranging from 2000 to 2014. We tested the performance of various
demographic models that favored a Bayesian skyline model with a
relaxed molecular clock (data not shown). The estimated shortterm mutation rate corresponded to 1.34 ⫻ 10⫺6 (95% confidence
interval of 1.11 ⫻ 10⫺6 to 1.56 ⫻ 10⫺6) substitutions per nucleotide site per year, similar to that reported previously in USA300
MRSA (50, 54) and other S. aureus evolutionary lineages (55, 56).
On the basis of this substitution rate, the estimated time of the
most recent common ancestor (TMRCA) of the USA300-NA
clone is 1996 (see Fig. S1 in the supplemental material), a result
that slightly shifts the ancestor of the CA-MRSA clone toward the
21st century, compared to the estimates obtained by Uhlemann
and colleagues (between 1970 and 1993) (50). In addition, our
analyses revealed that the acquisition of ACME, methicillin resistance, and a multiresistance plasmid dates back to 1996 and that
fluoroquinolone resistance was gained around 1998 (see Fig. S1 in
the supplemental material). It is noteworthy that, because of the
lack of intermediate strains harboring only one of those mobile
elements, we could not determine whether the acquisition of the
SCCmec element harboring the methicillin resistance gene mecA,
the multiresistance plasmid, and the ACME type I element occurred simultaneously or one event occurred very shortly after the
other. The divergence with the USA300-LV MRSA South American lineage dates back to 1983, an estimate slightly more recent
than that proposed by Planet et al. (around 1975) (27).
We then generated a Bayesian skyline plot that estimated the
pathogen’s demographic changes over time (Fig. 2) on the basis of
the 498 ST8 genomes. The ST8 USA300 effective population size
was relatively stable from the early 1960s to the mid-1990s. Then,
a bottleneck followed, giving rise to the so-called USA300-NA
clone. Interestingly, the USA300-NA clone went through a sharp
two-phase expansion event that perfectly matches the acquisitions
of the ACME and the antibiotic resistance elements, thus giving
4
®
mbio.asm.org
rise to the USA300-NA MRSA lineage, followed by the acquisition
of fluoroquinolone resistance, as mentioned above. Strikingly,
each of these major gains of function was accompanied by a
1-order-of-magnitude population size increase, resulting in a
global 100-fold effective population size increase (Fig. 2). However, after 2008, the coalescent-based analysis detects a sharp decline of the USA300-NA MRSA clone. These results need further
investigation to see if ongoing epidemiological surveys can confirm this model. We next searched for additional SNPs under positive selection that might explain the success of the USA300 lineage. To address this issue, we used the PCAdapt software (57, 58)
based on a Bayesian factor model to identify candidate mutations
(Fig. 3). In Table S2 in the supplemental material are shown the 20
SNPs with the highest scores (log10 Bayesian factors of ⬎6 ⫻ 1050).
Although such statistic-based predictions must be viewed cautiously and require experimental validation, the 20 mutations
were all located in protein coding sequences (see Table S2 in the
supplemental material). The six synonymous mutations might
affect the expression of the encoded protein. Strikingly, several
mutated genes might be involved in the interaction with the
human host or the environment, as they encode surface proteins, a lipoprotein, an autolysin, a putative transporter involved in teichoic acid transport, and a protein involved in
lipid biosynthesis.
French isolates are interspersed in United States isolate collections. Strikingly, the 67 strains in the French panel clustered in
12 lineages of 1 to 38 isolates. Furthermore, these clusters are
scattered within the North American MRSA isolates (USA300NA) (Fig. 1). This indicates a common origin of USA300-NA isolates and European USA300 CA-MRSA isolates, likely resulting
from several transfers from the United States to Europe. Interestingly, only one case could be related to travel to the United States,
in 2003 (strain HT20030124 from Annecy; see Table S1 in the
supplemental material).
We then calculated the genome-wide pairwise distances of the
most closely related French-American strains and compared them
with pairwise distances between strains collected from the same
patient at multiple sites, multiple colonies from the same nasal
sample, or strains collected from the same patient upon different
hospital admissions (59, 60) (Fig. 4). The median number of SNP
differences that separated the closest French-American epidemic
link was 74 (range, 59 to 120) and significantly differed from the
other two settings mentioned above (P ⬎ 0.0001). However, this
number of differences remains smaller than the median number
of SNP differences (n ⫽ 104) for USA300 CA-MRSA isolates collected from different households in a New York City community
(50). In addition, bootstrap support for clades encompassing the
French strains and their closest American homologs was ⬎70%
for ⬎50% of the different subsamples (see Fig. S2 in the supplemental material). Therefore, the epidemic links we detected between American and French strains are likely to reflect direct, or at
least very short, transmission paths.
The largest French cluster contains 28 isolates from an outbreak in a Parisian long-term care facility but also 3 strains isolated
in Aubervilliers nearby Paris, as well as 6 unlinked isolates from
different parts of France (Fig. 5A and B). This cluster is very likely
the product of a single introduction from the United States. Its
TMRCA is 1998 (Fig. 5C; see Fig. S1 in the supplemental material),
suggesting that this subclone had been circulating for at least a
decade in France before being noticed.
January/February 2016 Volume 7 Issue 1 e02183-15
Downloaded from mbio.asm.org on May 9, 2016 - Published by mbio.asm.org
Glaser et al.
A
B
FIG 3 SNP-based Bayesian factor model analysis for detecting genes involved in positive selection in the USA300-NA lineage. (A) Latent factors of the 12,840
SNPs and 498 strains with the first two factors. (B) Manhattan plot representing the selection scan and the outliers that are related to the different latent factors.
The dotted line highlights the top 1% of the SNPs associated with the highest Bayes factor (BF) values.
DISCUSSION
Different admissions
Here we show that, in most instances, the USA300 CA-MRSA
cases identified in France in the last decade corresponded to sporadic and independent importations from the United States
(USA300-NA MRSA clone) without further indication of spreading in French territory. This is consistent with another observation
in Switzerland, where the local increased prevalence of USA300
CA-MRSA in 2013 in Geneva was shown to result from multiple
French-American
closest epidemic link
P < 0.0001
Intra Patients
P < 0.0001
0
200
400
600
800
1,000
Genomewise pairwise distances (number of SNPs)
FIG 4 Box plots representing pairwise SNP comparisons of strains from the
same patient (black), the closest strains from France and their American relative (blue), and strains from different hospital admissions of the same patient
(grey). These data were gathered from the present study and those of Golubchik et al. (59) and Price et al. (60).
January/February 2016 Volume 7 Issue 1 e02183-15
importations from America (49). As the Institut de Veille Sanitaire (a disease surveillance agency of the Ministry of Health)
strongly recommend referring strains associated with multiple
cases of skin and soft tissue infections (SSTIs) (within a household
or other communities) to the French National Reference Laboratory, it is thus likely that the lack of observed spreading truly
is due to the absence or a very limited number of secondary
cases and not to underreporting. The reasons for the apparent
lack of success of these USA300-NA CA-MRSA isolates in diffusing within the French community are unknown. However, it
is in keeping with the low prevalence of CA-MRSA observed in
Europe and specifically in France (32), despite the isolation of
various CA-MRSA lineages on the European continent as early
as 1993 (38, 61). Moreover, these observations also argue
against the hypothesis that the USA300-NA MRSA clone is
intrinsically more successful than European CA-MRSA ST80
(3, 62, 63) and thus that the USA300-NA MRSA clone could be
a potential threat in Europe.
In one instance of the present study, however, one imported
lineage appeared to have a remarkable geographic spread, which
was subsequently responsible for two outbreaks, one in a longterm care facility (Paris 16th District) and another limited outbreak in a facility for the disabled also in the Paris area (Aubervilliers) in 2013 and 2014 (Fig. 5A). The same lineage was also
responsible for sporadic cases scattered in French territory, i.e., in
Paris (75019, June 2011), northeastern France (Strasbourg, January 2013), the French Alps (Grenoble, September 2011), central
France (Orleans, January 2011), and western France (St-Nazaire,
June 2012). Our Bayesian analysis predicts a TMRCA for this
clone of 1998 (Fig. 5C). This observation suggests that introduction of the USA300-NA MRSA clone can be successful but to a
limited extent. We did not detect genes specific to this lineage or
determine which genetic mechanisms might be behind the successful dissemination of certain isolates.
A recent report by Planet et al. (27) suggested that the history of
®
mbio.asm.org 5
Downloaded from mbio.asm.org on May 9, 2016 - Published by mbio.asm.org
Intercontinental Phylogeography of USA300
Downloaded from mbio.asm.org on May 9, 2016 - Published by mbio.asm.org
Glaser et al.
A
LTCF Paris 75016
Aubervilliers
Orléans
St-Nazaire
Paris
Créteil
Strasbourg
Grenoble
63
35
65
2
56
79
62
2
67
1
1
1
64
28
3
1
1
1
10
2
13
3
3
7
3
3
1
2
ST
20
14
02
93
23
0.5
ST
20
13
10
61
ST2
011
223
1
ST2011
2561
C
05
17
13
20
ST
84
312
201
ST
33
ST20
130548
_S38
RCH
10
f
Re
ST20130596
MW2
23
ST20130559
ST20130553
ST2013
0685
130557
ST20
6
ST
201
305
50
ST
20
13
05
ST
97
20
13
05
60
ST201305
51
ST20130547
ST20
1305
94
6
0684
ST2013
ST
20
13
05
93
ST
20
13
05
58
995
80-1
B
6
54
05
13
20
ST
46
05
13
20
ST
6
055
013
ST2
52
05
13
20
ST
0.3
0.2
ST2
0130
595
-T
023
231
-F
12
80
48
0.4
11 2
11
Frequency
ST
20
13
05
49
ST2
013
055
5
59
1301
ST20
14
114
201
ST
9
9
13
13
20
ST
98
13
13
20
ST
ST
20
13
13
97
57
ST201114
B
ST20120895
10
0.1
0
7.5
10
12.5
15
17.5
20
Most recent common ancestor ot the LTCF Paris 75016
(in years back to 2014)
FIG 5 Evolutionary relationships of the strains from an outbreak at a long-term care facility (LTCF) in the Paris area. (A) Minimum spanning tree based on SNP
data. Circle sizes are a function of the number of strains with the same genotype. Dashed lines correspond to links with ⬎25 SNPs; thin lines correspond to links
with ⬍25 SNPs, and thick lines correspond to links with ⱕ10 SNPs. Dates of isolation are indicated. Colors represent the geographical or epidemiological origins
according to the key. (B) ML tree based on the alignment of 488 SNPs of the dominant French lineage. Numbers of SNPs are mapped on the branches. Strains
from the outbreak group in three clusters colored green, blue, and red. (C) Posterior distribution of the Paris LTCF TMRCA generated with the BEAST algorithm.
The common ancestor (median) appeared in Europe in 1998 (95% highest posterior density, 1996 to 2003).
the USA300 CA-MRSA lineage followed a parallel evolution since
the mid-1970s on the American continents; one epidemic sublineage disseminated in South America (so-called USA300-LV) and
another disseminated in North America (referred to here as
USA300-NA MRSA). The separation of these two sublineages is
concomitant with the acquisition of the ACME by the North
American USA300 MRSA clone, while USA300-LV acquired an-
6
®
mbio.asm.org
other mobile element—the COMER element. They also acquired,
likely independently, two different subtypes of the SCCmec elements, type IVc in the LV clade and type IVa in the NA clade. The
demography of the USA300-NA lineage based on Bayesian analysis is in agreement with this model, showing a considerable demographic expansion around 1996, which coincides with the acquisition of the ACME and the SCCmec element by this USA300-NA
January/February 2016 Volume 7 Issue 1 e02183-15
lineage, followed 2 years later by a second expansion peak that
likely corresponds to the acquisition of fluoroquinolone resistance. This period of expansion assessed by Bayesian analysis is in
line with the observed global spread of the USA300-NA CAMRSA clone in North America and worldwide, although with a
more limited impact in Europe (9, 32, 35, 37, 38, 44, 45, 64–67).
Strikingly, the effective population size of the lineage is predicted
to be declining during the first decade of this century, a prediction
that should be interpreted cautiously since there is no surveillance
of the prevalence of USA300-NA CA-MRSA at the worldwide
level. However, a recent meta-analysis retrieving 1,004 publications covering the three continents showed that USA300 CAMRSA is far from expanding on the various continents (68) and is
instead declining in many countries (33, 34). Observations on the
European continent suggest that the USA300-NA lineage, which
has been described for decades as having a rather low prevalence
and, according to our study, was imported into France on multiple instances many years ago, is apparently not expanding (32, 34,
44, 69, 70). Overall, it appears that the USA300-NA clone is behaving like many other MRSA clones, in particular, HA-MRSA,
for which a model of cyclic periods of expansion, equilibrium, and
decline has been observed (56, 71–76). It is worth mentioning that
in only very few cases could a plausible account be given to explain
the final population expansions, such as acquisition of resistance
to antibiotics or accumulation of mutations and increased fitness
(71–73). In the cases of USA300 CA-MRSA and the worldwide
emergence of CA-MRSA in general, there is no satisfactory explanation for the concomitant emergence and expansion of the various CA-MRSA clones in different countries or on different continents at the end of the 20th century (5).
The most plausible scenario explaining CA-MRSA clone dynamics seems to be a complex combination of acquisition and loss
of traits under selection (resistance to antibiotics, resistance to
human host defenses), stochastic random processes, and eventually, replacement of bacterial communities by others competing
for the same niche. The latter factor might explain the population
decline observed in our Bayesian analyses; however, we have to
keep in mind that the natural habitat of S. aureus is the nose and
the skin. Therefore, focusing on population genomics of only
pathogenic lineages might blur our global understanding of species communities and population dynamics.
MATERIALS AND METHODS
Bacterial strains. The bacterial strains used in this study were from 24
sporadic cases that were geographically and temporally dispersed and
from three limited outbreaks reported to the French National Reference
Center for Staphylococci (CNR Staphylococci). All strains were isolated
from cases (infection and/or carriage) that occurred in continental French
territory in the past 11 years (see Table S1 in the supplemental material).
The first outbreak occurred in Le Puy en Velay, a small town located in a
rural area in Auvergne, France, and involved 12 individuals with
community-acquired SSTIs, i.e., 6 children attending the same day care
facility and 6 adult relatives in six households, between June 2011 and May
2012 (47). Two outbreaks occurred in long-term health care units. One
was in a nursing home for mentally disabled patients in Aubervilliers in
the Paris area; four patients were detected as carriers or infected with
USA300 CA-MRSA between July 2013 and February 2014. The other outbreak occurred in a long-term care facility in the Paris 16th District between June 2012 and December 2013 and involved 10 infected patients
and 12 carriers.
Four strains from the United States corresponded to sporadic cases of
SSTIs that occurred before April 2003 and were provided by Barry Kre-
January/February 2016 Volume 7 Issue 1 e02183-15
iswirth (77); three other strains originated from patients in Minnesota
before 2001 and were provided by Timothy Naimi (78). The genomic
backgrounds of these strains were assessed by diagnostic DNA microarray
analysis (Identibac S. aureus Genotyping; Alere, Jena, Germany) as previously described (79). This microarray covers 332 different target sequences corresponding to 185 distinct genes and their allelic variants. The
affiliation of isolates with clonal complexes was determined by a comparison of their hybridization profiles with those of reference strains previously characterized by multilocus sequence typing (79).
Published genomic data used for comparative analysis. Genomic
data from 36 isolates from the first large-scale genomic studies on USA300
CA-MRSA were retrieved (51). These strains had been isolated between
2003 and 2007 in California. In addition, the genomic data from 387 ST8
isolates from an extensive analysis of a New York City community performed between 2009 and 2011 were included. Metadata from these two
studies were graciously provided by the authors (50, 51).
DNA sequencing and SNP detection. S. aureus genomes were sequenced by using the Illumina HiSeq 2000 (101 nucleotide reads) or
MiSeq (150 nucleotide reads) sequencer, with a coverage of ⬎75⫻. Libraries were constructed with the Illumina TruSeq kit. Sequence reads
from previously described USA300 strains were downloaded from the
European Nucleotide Archive website (http://www.ebi.ac.uk/ena) or obtained directly from the authors. Sequence reads were aligned with the
first completely sequenced and annotated US300-NA genome, FPR3757
(GenBank accession no. CP000255.1) (10) by using the Burrows-Wheeler
Alignment tool (BWA mem 0.7.5a) (80). SNP calling was done with the
Genome Analysis Toolkit (GATK 2.7-2) (81) Unified Genotyper by following Broad Institute best practices. Candidate SNPs were further filtered by requiring coverage of greater than half of the genome mean coverage and 95% read agreement to validate the call. SNPs selected with this
stringent filter were regarded as true positives and were searched for in the
original set for every strain in which they had been filtered out. SNPs,
short indels, and coverage were visualized with SynTView (82). Specific
analysis of clones from the main French lineage was done by manually
checking read alignments around SNPs with Tablet (83). Four regions
corresponding to MGEs not present or showing a high density of SNPs in
other USA300 isolates and in closely related ST8 strains were removed
from the analysis, leaving a total of 12,840 polymorphic sites. These regions are the ACME and the SCCmec cassette (41 to 125 kb), pathogenicity island 3 (encoding enterotoxins K and Q; 881 to 896 kb) (84), and
integrated phages phiSA2usa (encoding the Panton-Valentine toxin;
1,546 to 1,644 kb) and phiSA3usa (2,084 to 2,127 kb). These regions
represent a total of 240 kb or 8.3% of the strain USA300_FPR3757 chromosome.
Accessory genome analysis. Plasmids and chromosomal regions specific to the French isolates compared to the FPR3757 reference genome
were analyzed following de novo assembly of unmapped reads. Assembly
was performed with Velvet by using an optimized k value (85). Plasmids
and phages were identified by BLASTn searches with plasmid and phage
sequences from S. aureus as the queries. Antibiotic resistance genes were
identified with the Center for Genomic Epidemiology web tool (http://
www.genomicepidemiology.org/).
Recombination detection. Most of the analyses developed in our analytical framework (phylogenetics and Bayesian inference) are based on
the assumptions that S. aureus evolution is mostly clonal and that recombination can be neglected. Therefore, in a preliminary step, we tested for
the presence of mosaic genomes with the algorithm SplitsTree v4.13.1
(86). Putative recombination signatures were inferred with Neighbor-Net
(87), and each data set was analyzed for the presence of recombinant
sequences with the PHI test in SplitsTree with an alpha value of 0.001.
Phylogenetic analyses. Phylogenic reconstructions were performed
by considering the 12,840 polymorphic sites retained in the core genome
of the 498 isolates. Phylogenetic relationships were reconstructed by the
ML approach implemented in PhyML 3.0 (88). The robustness of the ML
tree topology was assessed with bootstrapping analyses of 1,000 pseu-
®
mbio.asm.org 7
Downloaded from mbio.asm.org on May 9, 2016 - Published by mbio.asm.org
Intercontinental Phylogeography of USA300
doreplicated data sets. A transversion substitution model was selected on
the basis of Akaike’s information criterion with jModelTest 2.1.3 (89).
Phylogenies were rooted with MSSA strain ERS092996.
Coalescent-based analyses. Evolutionary rates and tree topologies
were analyzed with the generalized time reversible (GTR) and HasegawaKishino-Yano (90) (HKY) substitution models with gamma distributed
among-site rate variation with four rate categories (⌫4). We tested both a
strict molecular clock (which assumes the same evolutionary rate for all of
the branches of the tree) and a relaxed clock that allows different rates
among the branches. Constant-size, logistic, exponentially growing coalescent models were used. We also considered the Bayesian skyline plot
model (91), based on a general, nonparametric prior that enforces no
particular demographic history. We used a piecewise linear skyline model
with 20 groups and then compared the marginal likelihood of each model
with Bayes factors estimated in Tracer 1.5. Bayes factors represent the
ratio of the marginal likelihood of the models being compared. Approximate marginal likelihoods for each coalescent model were calculated via
importance sampling (1,000 bootstrap replications) with the harmonic
mean of the sampled likelihoods. A ratio between 3 and 10 indicates moderate support of the idea that one model fits the data better than another,
whereas values of ⬎10 indicate strong support. For each analysis, two
independent runs of 100 million steps were performed and the chain was
sampled every 10,000th generation. Examination of the Markov chain
Monte Carlo (MCMC) samples with Tracer 1.5 indicated convergence
and adequate mixing of the Markov chains, with effective sample sizes for
each parameter in the hundreds or thousands. The first 10% of each chain
was discarded as burn-in. We found the maximum clade credibility topology with TreeAnnotator 1.7.5 (52), and we reconstructed the Bayesian
skyline plot with Tracer 1.5. The relaxed clock models provided a better fit
to the data (Bayes factor, ⬎12) and under the different models tested, the
Bayesian skyline model provided a (marginally) better fit, overall.
Analysis of genes under positive selection. To capture SNPs under
positive selection, we used the PCAdapt software to perform a genome
scan based on a Bayesian factor model (57). We chose K ⫽ 2 factors
because the third and the fourth factors did not correspond to population
structure and distinguished individuals within the same clades. The factor
analysis was performed on the centered genotype matrix that was not
scaled. The MCMC algorithm was initialized by singular value decomposition, and the total number of steps was 400 with a burn-in of 200 steps.
SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at http://mbio.asm.org/
lookup/suppl/doi:10.1128/mBio.02183-15/-/DCSupplemental.
Figure S1, PDF file, 0.9 MB.
Figure S2, PDF file, 0.1 MB.
Table S1, XLS file, 1.7 MB.
Table S2, DOCX file, 0.1 MB.
ACKNOWLEDGMENTS
We are grateful to all of the clinicians and microbiologists from the different laboratories who provided samples and/or clinical data included in
this study. In particular, we gratefully acknowledge Tim Naimi and Barry
Kreiswirth in the United States for providing isolates, Beate Heym and
Isabelle Simon of Assistance Publique des Hôpitaux de Paris, and Olivier
Baud and Olivier Lesens of the Clermont-Ferrand Hospital for their contribution to the investigation of the two first major outbreaks that took
place in France in a long-term care facility in the Paris area and in a day
care center at Le Puy en Velay and for providing us with all of the isolates
involved in these outbreaks. We thank the technicians of the National
Reference Center for Staphylococci for their skillful technical contribution and Jerome Etienne and Gerard Lina for scientific input. We thank
Pierre Lechat of the bioinformatics platform of the Pasteur Institute for
SynTView integration. We also thank Anne-Catrin Uhlemann and Ryan
Tewhey, who graciously provided metadata concerning the USA300 genomes used in their studies (50, 51).
This work was supported by the Fondation pour la Recherche Médi-
8
®
mbio.asm.org
cale (grant ING20111223510); Labex ECOFECT, Labex IBEID, and Infrastructure d’Avenir France Génomique (ANR10-IBNS-09-08); and the Institut de Veille Sanitaire (INVS).
FUNDING INFORMATION
Infrastructure d’Avenir France Genomique provided funding to Philippe
Glaser under grant number ANR10-IBNS-09-08. Institut de Veille Sanitaire provided funding to François Vandenesch. Fondation pour la Recherche Médicale (FRM) provided funding to Patricia Martins Simões
under grant number ING20111223510.
REFERENCES
1. Lowy FD. 1998. Staphylococcus aureus infections. N Engl J Med 339:
520 –532. http://dx.doi.org/10.1056/NEJM199808203390806.
2. Otto M. 2013. Community-associated MRSA: what makes them special?
Int J Med Microbiol 303:324 –330. http://dx.doi.org/10.1016/
j.ijmm.2013.02.007.
3. Thurlow LR, Joshi GS, Richardson AR. 2012. Virulence strategies of the
dominant USA300 lineage of community-associated methicillin-resistant
Staphylococcus aureus (CA-MRSA). FEMS Immunol Med Microbiol 65:
5–22. http://dx.doi.org/10.1111/j.1574-695X.2012.00937.x.
4. Chambers HF. 2001. The changing epidemiology of Staphylococcus aureus? Emerg Infect Dis 7:178 –182. http://dx.doi.org/10.3201/
eid0702.700178.
5. Vandenesch F, Naimi T, Enright MC, Lina G, Nimmo GR, Heffernan
H, Liassine N, Bes M, Greenland T, Reverdy M-E, Etienne J. 2003.
Community-acquired methicillin-resistant Staphylococcus aureus carrying Panton-Valentine leukocidin genes: worldwide emergence. Emerg Infect Dis 9:978 –984. http://dx.doi.org/10.3201/eid0908.030089.
6. Mediavilla JR, Chen L, Mathema B, Kreiswirth BN. 2012. Global epidemiology of community-associated methicillin resistant Staphylococcus aureus (CA-MRSA). Curr Opin Microbiol 15:588 –595. http://dx.doi.org/
10.1016/j.mib.2012.08.003.
7. Kallen AJ, Brunkard J, Moore Z, Budge P, Arnold KE, Fosheim G,
Finelli L, Beekmann SE, Polgreen PM, Gorwitz R, Hageman J. 2009.
Staphylococcus aureus community-acquired pneumonia during the 2006
to 2007 influenza season. Ann Emerg Med 53:358 –365. http://dx.doi.org/
10.1016/j.annemergmed.2008.04.027.
8. McDougal LK, Steward CD, Killgore GE, Chaitram JM, McAllister SK,
Tenover FC. 2003. Pulsed-field gel electrophoresis typing of oxacillinresistant Staphylococcus aureus isolates from the United States: establishing a national database. J Clin Microbiol 41:5113–5120. http://dx.doi.org/
10.1128/JCM.41.11.5113-5120.2003.
9. Tenover FC, McDougal LK, Goering RV, Killgore G, Projan SJ, Patel
JB, Dunman PM. 2006. Characterization of a strain of communityassociated methicillin-resistant Staphylococcus aureus widely disseminated in the United States. J Clin Microbiol 44:108 –118. http://
dx.doi.org/10.1128/JCM.44.1.108-118.2006.
10. Diep BA, Gill SR, Chang RF, Phan TH, Chen JH, Davidson MG, Lin F,
Lin J, Carleton HA, Mongodin EF, Sensabaugh GF, PerdreauRemington F. 2006. Complete genome sequence of USA300, an epidemic
clone of community-acquired meticillin-resistant Staphylococcus aureus.
Lancet 367:731–739. http://dx.doi.org/10.1016/S0140-6736(06)68231-7.
11. Kennedy AD, Otto M, Braughton KR, Whitney AR, Chen L, Mathema
B, Mediavilla JR, Byrne KA, Parkins LD, Tenover FC, Kreiswirth BN,
Musser JM, DeLeo FR. 2008. Epidemic community-associated
methicillin-resistant Staphylococcus aureus: recent clonal expansion and
diversification. Proc Natl Acad Sci U S A 105:1327–1332. http://
dx.doi.org/10.1073/pnas.0710217105.
12. Robinson DA, Enright MC. 2003. Evolutionary models of the emergence of
methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother
47:3926 –3934. http://dx.doi.org/10.1128/AAC.47.12.3926-3934.2003.
13. Li M, Diep BA, Villaruz AE, Braughton KR, Jiang X, DeLeo FR,
Chambers HF, Lu Y, Otto M. 2009. Evolution of virulence in epidemic
community-associated methicillin-resistant Staphylococcus aureus. Proc
Natl Acad Sci U S A 106:5883–5888. http://dx.doi.org/10.1073/
pnas.0900743106.
14. Löffler B, Hussain M, Grundmeier M, Brück M, Holzinger D, Varga G,
Roth J, Kahl BC, Proctor RA, Peters G. 2010. Staphylococcus aureus
Panton-Valentine leukocidin is a very potent cytotoxic factor for human
neutrophils. PLoS Pathog 6:e1000715. http://dx.doi.org/10.1371/
journal.ppat.1000715.
January/February 2016 Volume 7 Issue 1 e02183-15
Downloaded from mbio.asm.org on May 9, 2016 - Published by mbio.asm.org
Glaser et al.
15. Crémieux A-C, Dumitrescu O, Lina G, Vallee C, Côté J-F, Muffat-Joly
M, Lilin T, Etienne J, Vandenesch F, Saleh-Mghir A. 2009. PantonValentine leukocidin enhances the severity of community-associated
methicillin-resistant Staphylococcus aureus rabbit osteomyelitis. PLoS One
4:e7204. http://dx.doi.org/10.1371/journal.pone.0007204.
16. Diep BA, Carleton HA, Chang RF, Sensabaugh GF, PerdreauRemington F. 2006. Roles of 34 virulence genes in the evolution of
hospital- and community-associated strains of methicillin-resistant
Staphylococcus aureus. J Infect Dis 193:1495–1503. http://dx.doi.org/
10.1086/503777.
17. Sabat AJ, Köck R, Akkerboom V, Hendrix R, Skov RL, Becker K,
Friedrich AW. 2013. Novel organization of the arginine catabolic mobile
element and staphylococcal cassette chromosome mec composite island
and its horizontal transfer between distinct Staphylococcus aureus genotypes. Antimicrob Agents Chemother 57:5774 –5777. http://dx.doi.org/
10.1128/AAC.01321-13.
18. Bartels MD, Hansen LH, Boye K, Sørensen SJ, Westh H. 2011. An
unexpected location of the arginine catabolic mobile element (ACME) in
a USA300-related MRSA strain. PLoS One 6:e16193. http://dx.doi.org/
10.1371/journal.pone.0016193.
19. Shore AC, Deasy EC, Slickers P, Brennan G, O’Connell B, Monecke S,
Ehricht R, Coleman DC. 2011. Detection of staphylococcal cassette chromosome mec type XI carrying highly divergent mecA, mecI, mecR1, blaZ,
and ccr genes in human clinical isolates of clonal complex 130 methicillinresistant Staphylococcus aureus. Antimicrob Agents Chemother 55:
3765–3773. http://dx.doi.org/10.1128/AAC.00187-11.
20. Espedido BA, Steen JA, Barbagiannakos T, Mercer J, Paterson DL,
Grimmond SM, Cooper MA, Gosbell IB, van Hal SJ, Jensen SO. 2012.
Carriage of an Acme II variant may have contributed to methicillinresistant Staphylococcus aureus sequence type 239-like strain replacement
in Liverpool Hospital, Sydney, Australia. Antimicrob Agents Chemother
56:3380 –3383. http://dx.doi.org/10.1128/AAC.00013-12.
21. Goering RV, McDougal LK, Fosheim GE, Bonnstetter KK, Wolter DJ,
Tenover FC. 2007. Epidemiologic distribution of the arginine catabolic
mobile element among selected methicillin-resistant and methicillinsusceptible Staphylococcus aureus isolates. J Clin Microbiol 45:1981–1984.
http://dx.doi.org/10.1128/JCM.00273-07.
22. Thurlow LR, Joshi GS, Clark JR, Spontak JS, Neely CJ, Maile R,
Richardson AR. 2013. Functional modularity of the arginine catabolic
mobile element contributes to the success of USA300 methicillin-resistant
Staphylococcus aureus. Cell Host Microbe 13:100 –107. http://dx.doi.org/
10.1016/j.chom.2012.11.012.
23. Planet PJ, LaRussa SJ, Dana A, Smith H, Xu A, Ryan C, Uhlemann A-C,
Boundy S, Goldberg J, Narechania A, Kulkarni R, Ratner AJ, Geoghegan JA, Kolokotronis S-O, Prince A. 2013. Emergence of the epidemic
methicillin-resistant Staphylococcus aureus strain USA300 coincides with
horizontal transfer of the arginine catabolic mobile element and speGmediated adaptations for survival on skin. mBio 4:e00889-13. http://
dx.doi.org/10.1128/mBio.00889-13.
24. Nimmo GR. 2012. USA300 abroad: global spread of a virulent strain of
community-associated methicillin-resistant Staphylococcus aureus. Clin
Microbiol Infect 18:725–734. http://dx.doi.org/10.1111/j.1469
-0691.2012.03822.x.
25. Bartoloni A, Riccobono E, Magnelli D, Villagran AL, Di Maggio T,
Mantella A, Sennati S, Revollo C, Strohmeyer M, Giani T, Pallecchi L,
Rossolini GM. 2015. Methicillin-resistant Staphylococcus aureus in hospitalized patients from the Bolivian Chaco. Int J Infect Dis 30:156 –160.
http://dx.doi.org/10.1016/j.ijid.2014.12.006.
26. Reyes J, Rincón S, Díaz L, Panesso D, Contreras GA, Zurita J, Carrillo
C, Rizzi A, Guzmán M, Adachi J, Chowdhury S, Murray BE, Arias CA.
2009. Dissemination of methicillin-resistant Staphylococcus aureus
(MRSA), USA300 sequence type 8 lineage in Latin America. Clin Infect
Dis 49:1861–1867. http://dx.doi.org/10.1086/648426.
27. Planet PJ, Diaz L, Kolokotronis S-O, Narechania A, Reyes J, Xing G,
Rincon S, Smith H, Panesso D, Ryan C, Smith DP, Guzman M, Zurita
J, Sebra R, Deikus G, Nolan RL, Tenover FC, Weinstock GM, Robinson
DA, Arias CA. 2015. Parallel epidemics of community-associated
methicillin-resistant Staphylococcus aureus USA300 infection in North
and South America. J Infect Dis 212:1874 –1882. http://dx.doi.org/
10.1093/infdis/jiv320.
28. Otter JA, French GL. 2010. Molecular epidemiology of communityassociated meticillin-resistant Staphylococcus aureus in Europe. Lancet Infect Dis 10:227–239. http://dx.doi.org/10.1016/S1473-3099(10)70053-0.
January/February 2016 Volume 7 Issue 1 e02183-15
29. Stegger M, Wirth T, Andersen PS, Skov RL, De Grassi A, Simões PM,
Tristan A, Petersen A, Aziz M, Kiil K, Cirković I, Udo EE, del Campo
R, Vuopio-Varkila J, Ahmad N, Tokajian S, Peters G, Schaumburg F,
Olsson-Liljequist B, Givskov M, Driebe EE, Vigh HE, Shittu A,
Ramdani-Bougessa N, Rasigade J-P, Price LB, Vandenesch F, Larsen
AR, Laurent F. 2014. Origin and evolution of European communityacquired methicillin-resistant Staphylococcus aureus. mBio
5:e01044 – 01014. http://dx.doi.org/10.1128/mBio.01044-14.
30. Antri K, Rouzic N, Dauwalder O, Boubekri I, Bes M, Lina G, Vandenesch F, Tazir M, Ramdani-Bouguessa N, Etienne J. 2011. High prevalence of methicillin-resistant Staphylococcus aureus clone ST80-IV in hospital and community settings in Algiers. Clin Microbiol Infect 17:
526 –532. http://dx.doi.org/10.1111/j.1469-0691.2010.03273.x.
31. Köck R, Becker K, Cookson B, van Gemert-Pijnen JE, Harbarth S,
Kluytmans J, Mielke M, Peters G, Skov RL, Struelens MJ, Tacconelli E,
Navarro Torné A, Witte W, Friedrich AW. 2010. Methicillin-resistant
Staphylococcus aureus (MRSA): burden of disease and control challenges
in Europe. Euro Surveill 15:. http://www.eurosurveillance.org/
ViewArticle.aspx?ArticleId⫽19688.
32. Grundmann H, Aanensen DM, van den Wijngaard CC, Spratt BG,
Harmsen D, Friedrich AW, the European Staphylococcal Reference
Laboratory Working Group. 2010. Geographic distribution of Staphylococcus aureus causing invasive infections in Europe: a molecularepidemiological analysis. PLoS Med 7:e1000215. http://dx.doi.org/
10.1371/journal.pmed.1000215.
33. Brauner J, Hallin M, Deplano A, De Mendonça R, Nonhoff C, De Ryck
R, Roisin S, Struelens MJ, Denis O. 2013. Community-acquired
methicillin-resistant Staphylococcus aureus clones circulating in Belgium
from 2005 to 2009: changing epidemiology. Eur J Clin Microbiol Infect
Dis 32:613– 620. http://dx.doi.org/10.1007/s10096-012-1784-6.
34. Dodémont M. 2014. Epidémiologie moléculaire des souches de Staphylococcus aureus résistantes à la méticillin portant les gènes codant la leucocidine de Panton-Valentine en Belgique de 2010 à 2014. SympoStaph,
Lyon, France.
35. Rolo J, Miragaia M, Turlej-Rogacka A, Empel J, Bouchami O, Faria NA,
Tavares A, Hryniewicz W, Fluit AC, de Lencastre H, CONCORD
Working Group. 2012. High genetic diversity among communityassociated Staphylococcus aureus in Europe: results from a multicenter
study. PLoS One 7:e34768. http://dx.doi.org/10.1371/
journal.pone.0034768.
36. Garnier F, Tristan A, François B, Etienne J, Delage-Corre M, Martin C,
Liassine N, Wannet W, Denis F, Ploy M-C. 2006. Pneumonia and new
methicillin-resistant Staphylococcus aureus clone. Emerg Infect Dis 12:
498 –500. http://dx.doi.org/10.3201/eid1205.051040.
37. Blanco R, Tristan A, Ezpeleta G, Larsen AR, Bes M, Etienne J, Cisterna
R, Laurent F. 2011. Molecular epidemiology of Panton-Valentine
leukocidin-positive Staphylococcus aureus in Spain: emergence of the
USA300 clone in an autochthonous population. J Clin Microbiol 49:
433– 436. http://dx.doi.org/10.1128/JCM.02201-10.
38. Larsen A, Stegger M, Goering R, Sørum M, Skov R. 2007. Emergence
and dissemination of the methicillin resistant Staphylococcus aureus
USA300 clone in Denmark (2000 –2005). Euro Surveill 12. http://
www.eurosurveillance.org/ViewArticle.aspx?ArticleId⫽682.
39. Kearns AM, Ganner M, Hill RLR, East C, McCormick Smith I, Ganner MA
Ellington MJ. 2007. O118 community-associated MRSA ST8-SCCmecIVa
(USA-300): experience in England and Wales. Int J Antimicrob Agents
29(Suppl 2):S27. http://dx.doi.org/10.1016/S0924-8579(07)70087-0.
40. Baldan R, Tassan Din C, Semeraro G, Costa C, Cichero P, Scarpellini
P, Moro M, Cirillo DM. 2009. Severe community onset infections in
healthy individuals caused by community-acquired MRSA in an Italian
teaching hospital, 2006 –2008. J Hosp Infect 72:271–273. http://
dx.doi.org/10.1016/j.jhin.2009.04.007.
41. Manzur A, Dominguez AM, Pujol M, González MP, Limon E, Hornero A,
Martín R, Gudiol F, Ariza J. 2008. Community-acquired methicillinresistant Staphylococcus aureus infections: an emerging threat in Spain. Clin Microbiol Infect 14:377–380. http://dx.doi.org/10.1111/j.1469-0691.2007.01934.x.
42. Marimón JM, Villar M, García-Arenzana JM, de la Caba Ide L, PérezTrallero E. 2012. Molecular characterization of Staphylococcus aureus carrying the Panton-Valentine leucocidin genes in northern Spain. J Infect
64:47–53. http://dx.doi.org/10.1016/j.jinf.2011.10.010.
43. Armand-Lefevre L, Buke C, Ruppe E, Barbier F, Lolom I, Andremont
A, Ruimy R, Lucet J-C. 2010. Secular trends and dynamics of hospital
®
mbio.asm.org 9
Downloaded from mbio.asm.org on May 9, 2016 - Published by mbio.asm.org
Intercontinental Phylogeography of USA300
44.
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
10
associated methicillin-resistant Staphylococcus aureus. Clin Microbiol Infect 16:1435–1441. http://dx.doi.org/10.1111/j.1469-0691.2009.03138.x.
Otter JA, Havill NL, Boyce JM, French GL. 2009. Comparison of
community-associated methicillin-resistant Staphylococcus aureus from
teaching hospitals in London and the USA, 2004 –2006: where is USA300
in the UK? Eur J Clin Microbiol Infect 28:835– 839. http://dx.doi.org/
10.1007/s10096-008-0698-9.
Ellington MJ, Perry C, Ganner M, Warner M, McCormick Smith I, Hill
RL Shallcross L, Sabersheikh S, Holmes A, Cookson BD, Kearns AM,
Kearns AM. 2009. Clinical and molecular epidemiology of ciprofloxacinsusceptible MRSA encoding PVL in England and Wales. Eur J Clin Microbiol Infect 28:1113–1121. http://dx.doi.org/10.1007/s10096-009-0757-x.
Huijsdens XW, Janssen M, Renders NH, Leenders A, van Wijk P, van
Santen Verheuvel MG, van Driel JK, Morroy G. 2008. Methicillinresistant Staphylococcus aureus in a beauty salon, the Netherlands. Emerg
Infect Dis 14:1797–1799. http://dx.doi.org/10.3201/eid1411.071297.
Baud O, Giron S, Aumeran C, Mouly D, Bardon G, Besson M, Delmas
J, Coignard B, Tristan A, Vandenesch F, Illes G, Lesens O. 2014. First
outbreak of community-acquired MRSA USA300 in France: failure to
suppress prolonged MRSA carriage despite decontamination procedures.
Eur J Clin Microbiol Infect 33:1757–1762. http://dx.doi.org/10.1007/
s10096-014-2127-6.
Van der Mee-Marquet N, Poisson D-M, Lavigne J-P, Francia T, Tristan A,
Vandenesch F, Quentin R, Bertrand X. 2015. The incidence of Staphylococcus aureus ST8-USA300 among French pediatric inpatients is rising. Eur J Clin
Microbiol Infect 34:935–942. http://dx.doi.org/10.1007/s10096-014-2308-3.
Von Dach E, Diene SM, Fankhauser C, Schrenzel J, Harbarth S,
François P. 13 October 2015. Comparative genomics of communityassociated methicillin-resistant Staphylococcus aureus shows the emergence of clone ST8-USA300 in Geneva, Switzerland. J Infect Dis. http://
dx.doi.org/10.1093/infdis/jiv489.
Uhlemann A-C, Dordel J, Knox JR, Raven KE, Parkhill J, Holden MT,
Peacock SJ, Lowy FD. 2014. Molecular tracing of the emergence, diversification, and transmission of S. aureus sequence type 8 in a New York
community. Proc Natl Acad Sci U S A 111:6738 – 6743. http://dx.doi.org/
10.1073/pnas.1401006111.
Tewhey R, Cannavino CR, Leake JA, Bansal V, Topol EJ, Torkamani A,
Bradley JS, Schork NJ. 2012. Genetic structure of community acquired
methicillin-resistant Staphylococcus aureus USA300. BMC Genomics 13:
508. http://dx.doi.org/10.1186/1471-2164-13-508.
Kennedy AD, Porcella SF, Martens C, Whitney AR, Braughton KR,
Chen L, Craig CT, Tenover FC, Kreiswirth BN, Musser JM, DeLeo FR.
2010. Complete nucleotide sequence analysis of plasmids in strains of
Staphylococcus aureus clone USA300 reveals a high level of identity among
isolates with closely related core genome sequences. J Clin Microbiol 48:
4504 – 4511. http://dx.doi.org/10.1128/JCM.01050-10.
Drummond AJ, Rambaut A. 2007. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:214. http://dx.doi.org/10.1186/
1471-2148-7-214.
Alam MT, Read TD, Petit RA, Boyle-Vavra S, Miller LG, Eells SJ, Daum
RS, David MZ. 2015. Transmission and microevolution of USA300
MRSA in U.S. households: evidence from whole-genome sequencing.
mBio 6:e00054. http://dx.doi.org/10.1128/mBio.00054-15.
Nübel U, Roumagnac P, Feldkamp M, Song J-H, Ko KS, Huang Y-H,
Coombs G, Ip M, Westh H, Skov R, Struelens MJ, Goering RV,
Strommenger B, Weller A, Write W. 2010. A timescale for evolution,
population expansion, and spatial spread of an emerging clone of
methicillin-resistant Staphylococcus aureus. PLoS Pathog 6:e1000855.
http://dx.doi.org/10.1371/journal.ppat.1000855.
Holden MT, Hsu L-Y, Kurt K, Weinert LA, Mather AE, Harris SR,
Strommenger B, Layer F, Witte W, de Lencastre H, Skov R, Westh H,
Zemlicková H, Coombs G, Kearns AM, Hill RL, Edgeworth J, Gould I,
Gant V, Cooke J, Edwards GF, McAdam PR, Templeton KE, McCann
A, Zhou Z, Castillo-Ramírez S, Feil EJ, Hudson LO, Enright MC,
Balloux F, Aanensen DM, Spratt BG, Fitzgerald JR, Parkhill J, Achtman
M, Bentley SD, Nübel U. 2013. A genomic portrait of the emergence,
evolution, and global spread of a methicillin-resistant Staphylococcus aureus pandemic. Genome Res 23:653– 664. http://dx.doi.org/10.1101/
gr.147710.112.
Duforet-Frebourg N, Bazin E, Blum MG. 2014. Genome scans for detecting footprints of local adaptation using a Bayesian factor model. Mol
Biol Evol 31:2483–2495. http://dx.doi.org/10.1093/molbev/msu182.
Wirth T. 2015. Massive lineage replacements and cryptic outbreaks of
®
mbio.asm.org
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
Salmonella typhi in eastern and southern Africa. Nat Genet 47:565–567.
http://dx.doi.org/10.1038/ng.3318.
Golubchik T, Batty EM, Miller RR, Farr H, Young BC, Larner-Svensson
H, Fung R, Godwin H, Knox K, Votintseva A, Everitt RG, Street T, Cule
M, Ip CL, Didelot X, Peto TE, Harding RM, Wilson DJ, Crook DW,
Bowden R. 2013. Within-host evolution of Staphylococcus aureus during
asymptomatic carriage. PLoS One 8:e61319. http://dx.doi.org/10.1371/
journal.pone.0061319.
Price JR, Golubchik T, Cole K, Wilson DJ, Crook DW, Thwaites GE,
Bowden R, Walker AS, Peto TEA, Paul J, Llewelyn MJ. 2014. Wholegenome sequencing shows that patient-to-patient transmission rarely accounts for acquisition of Staphylococcus aureus in an intensive care unit.
Clin Infect Dis 58:609 – 618. http://dx.doi.org/10.1093/cid/cit807.
Faria NA, Oliveira DC, Westh H, Monnet DL, Larsen AR, Skov R, de
Lencastre H. 2005. Epidemiology of emerging methicillin-resistant Staphylococcus aureus (MRSA) in Denmark: a nationwide study in a country
with low prevalence of MRSA infection. J Clin Microbiol 43:1836 –1842.
http://dx.doi.org/10.1128/JCM.43.4.1836-1842.2005.
Herbert S, Ziebandt A-K, Ohlsen K, Schäfer T, Hecker M, Albrecht D,
Novick R, Götz F. 2010. Repair of global regulators in Staphylococcus
aureus 8325 and comparative analysis with other clinical isolates. Infect
Immun 78:2877–2889. http://dx.doi.org/10.1128/IAI.00088-10.
Lee SM, Ender M, Adhikari R, Smith JM, Berger-Bächi B, Cook GM.
2007. Fitness cost of staphylococcal cassette chromosome mec in
methicillin-resistant Staphylococcus aureus by way of continuous culture.
Antimicrob Agents Chemother 51:1497–1499. http://dx.doi.org/10.1128/
AAC.01239-06.
Talan DA, Krishnadasan A, Gorwitz RJ, Fosheim GE, Limbago B,
Albrecht V, Moran GJ, EMERGEncy ID Net Study Group. 2011. Comparison of Staphylococcus aureus from skin and soft-tissue infections in US
emergency department patients, 2004 and 2008. Clin Infect Dis 53:
144 –149. http://dx.doi.org/10.1093/cid/cir308.
Klein E, Smith DL, Laxminarayan R. 2009. Community-associated
methicillin-resistant Staphylococcus aureus in outpatients, United States,
1999 –2006. Emerg Infect Dis 15:1925–1930. http://dx.doi.org/10.3201/
eid1512.081341.
Tenover FC, Goering RV. 2009. Methicillin-resistant Staphylococcus aureus strain USA300: origin and epidemiology. J Antimicrob Chemother
64:441– 446. http://dx.doi.org/10.1093/jac/dkp241.
Ruppitsch W, Stoger A, Schmid D, Fretz R, Indra A, Allerberger F,
Witte W. 2007. Occurrence of the USA300 community-acquired Staphylococcus aureus clone in Austria. Euro Surveill 12:. http://
www.eurosurveillance.org/viewarticle.aspx?articleid⫽3294.
Morgan E. 2014. PVL⫹ MRSA on four continents: emergence and shifting
genetic backgrounds in the literature, 1961–2013, Poster 168. International Symposium on Staphylococci and Staphylococcal Infections
(ISSSI) 2014, Chicago, IL.
Krziwanek K, Luger C, Sammer B, Stumvoll S, Stammler M, Sagel U, Witte
W, Mittermayer H. 2008. MRSA in Austria—an overview. Clin Microbiol
Infect 14:250 –259. http://dx.doi.org/10.1111/j.1469-0691.2007.01896.x.
Krziwanek K, Metz-Gercek S, Mittermayer H. 2011. Trends in the occurrence of MRSA strains in upper Austria from 2006 to 2009. Clin Microbiol
Infect 17:920 –923. http://dx.doi.org/10.1111/j.1469-0691.2010.03376.x.
Hsu L-Y, Harris SR, Chlebowicz MA, Lindsay JA, Koh T-H, Krishnan
P, Tan T-Y, Hon P-Y, Grubb WB, Bentley SD, Parkhill J, Peacock SJ,
Holden MT. 2015. Evolutionary dynamics of methicillin-resistant Staphylococcus aureus within a healthcare system. Genome Biol 16:81. http://
dx.doi.org/10.1186/s13059-015-0643-z.
Chambers HF, DeLeo FR. 2009. Waves of resistance: Staphylococcus aureus in the antibiotic era. Nat Rev Microbiol 7:629 – 641. http://dx.doi.org/
10.1038/nrmicro2200.
Knight GM, Budd EL, Whitney L, Thornley A, Al-Ghusein H, Planche
T, Lindsay JA. 2012. Shift in dominant hospital-associated methicillinresistant Staphylococcus aureus (HA-MRSA) clones over time. J Antimicrob Chemother 67:2514 –2522. http://dx.doi.org/10.1093/jac/dks245.
Dantes R, Mu Y, Belflower R, Aragon D, Dumyati G, Harrison LH,
Lessa FC, Lynfield R, Nadle J, Petit S, Ray SM, Schaffner W, Townes J,
Fridkin S, Emerging Infections Program–Active Bacterial Core Surveillance MRSA, Surveillance Investigators. 2013. National burden of invasive methicillin-resistant Staphylococcus aureus infections, United States,
2011. JAMA Intern Med 173:1970 –1978. http://dx.doi.org/10.1001/
jamainternmed.2013.10423.
Landrum ML, Neumann C, Cook C, Chukwuma U, Ellis MW, Hos-
January/February 2016 Volume 7 Issue 1 e02183-15
Downloaded from mbio.asm.org on May 9, 2016 - Published by mbio.asm.org
Glaser et al.
76.
77.
78.
79.
80.
81.
82.
penthal DR, Murray CK. 2012. Epidemiology of Staphylococcus aureus
blood and skin and soft tissue infections in the US military health system,
2005–2010. JAMA 308:50 –59. http://dx.doi.org/10.1001/jama.2012.7139.
Kallen AJ, Mu Y, Bulens S, Reingold A, Petit S, Gershman K, Ray SM,
Harrison LH, Lynfield R, Dumyati G, Townes JM, Schaffner W, Patel
PR, Fridkin SK, Active bacterial Core surveillance (ABCs) MRSA Investigators of the Emerging Infections program. 2010. Health care of
associated invasive MRSA infections, 2005–2008. JAMA 304:641– 648.
http://dx.doi.org/10.1001/jama.2010.1115.
Saïd-Salim B, Mathema B, Braughton K, Davis S, Sinsimer D, Eisner W,
Likhoshvay Y, Deleo FR, Kreiswirth BN. 2005. Differential distribution
and expression of Panton-Valentine leucocidin among communityacquired methicillin-resistant Staphylococcus aureus strains. J Clin Microbiol 43:3373–3379. http://dx.doi.org/10.1128/JCM.43.7.3373-3379.2005.
Naimi TS, LeDell KH, Como-Sabetti K, Borchardt SM, Boxrud DJ,
Etienne J, Johnson SK, Vandenesch F, Fridkin S, O’Boyle C, Danila RN,
Lynfield R. 2003. Comparison of community- and health care-associated
methicillin-resistant Staphylococcus aureus infection. JAMA 290:
2976 –2984. http://dx.doi.org/10.1001/jama.290.22.2976.
Monecke S, Jatzwauk L, Weber S, Slickers P, Ehricht R. 2008. DNA
microarray-based genotyping of methicillin-resistant Staphylococcus aureus strains from eastern Saxony. Clin Microbiol Infect 14:534 –545.
http://dx.doi.org/10.1111/j.1469-0691.2008.01986.x.
Li H, Durbin R. 2009. Fast and accurate short read alignment with
Burrows-Wheeler transform. Bioinformatics Oxf Engl 25:1754 –1760.
http://dx.doi.org/10.1093/bioinformatics/btp324.
McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky
A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA. 2010. The
genome analysis toolkit: a MapReduce framework for analyzing nextgeneration DNA sequencing data. Genome Res 20:1297–1303. http://
dx.doi.org/10.1101/gr.107524.110.
Lechat P, Souche E, Moszer I. 2013. SynTView—an interactive multi-view
January/February 2016 Volume 7 Issue 1 e02183-15
83.
84.
85.
86.
87.
88.
89.
90.
91.
genome browser for next-generation comparative microorganism genomics.
BMC Bioinformatics 14:277. http://dx.doi.org/10.1186/1471-2105-14-277.
Milne I, Stephen G, Bayer M, Cock PJ, Pritchard L, Cardle L, Shaw PD,
Marshall D. 2013. Using tablet for visual exploration of secondgeneration sequencing data. Brief Bioinform 14:193–202. http://
dx.doi.org/10.1093/bib/bbs012.
Yarwood JM, McCormick JK, Paustian ML, Orwin PM, Kapur V,
Schlievert PM. 2002. Characterization and expression analysis of Staphylococcus aureus pathogenicity island 3. Implications for the evolution of
staphylococcal pathogenicity islands. J Biol Chem 277:13138 –13147.
http://dx.doi.org/10.1074/jbc.M111661200.
Zerbino DR, Birney E. 2008. Velvet: algorithms for de novo short read
assembly using de Bruijn graphs. Genome Res 18:821– 829. http://
dx.doi.org/10.1101/gr.074492.107.
Huson DH, Bryant D. 2006. Application of phylogenetic networks in
evolutionary studies. Mol Biol Evol 23:254 –267. http://dx.doi.org/
10.1093/molbev/msj030.
Bryant D, Moulton V. 2004. Neighbor-Net: an agglomerative method for
the construction of phylogenetic networks. Mol Biol Evol 21:255–265.
http://dx.doi.org/10.1093/molbev/msh018.
Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel
O. 2010. New algorithms and methods to estimate maximum-likelihood
phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:
307–321. http://dx.doi.org/10.1093/sysbio/syq010.
Darriba D, Taboada GL, Doallo R, Posada D. 2012. JModelTest 2: More
models, new heuristics and parallel computing. Nat Methods 9:772.
http://dx.doi.org/10.1038/nmeth.2109.
Hasegawa M, Kishino H, Yano T. 1985. Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol 22:160 –174.
http://dx.doi.org/10.1007/BF02101694.
Drummond AJ, Rambaut A, Shapiro B, Pybus OG. 2005. Bayesian coalescent inference of past population dynamics from molecular sequences. Mol
Biol Evol 22:1185–1192. http://dx.doi.org/10.1093/molbev/msi103.
®
mbio.asm.org 11
Downloaded from mbio.asm.org on May 9, 2016 - Published by mbio.asm.org
Intercontinental Phylogeography of USA300

Documents pareils