Deep-water massive sands: facies, processes and channel

Transcription

Deep-water massive sands: facies, processes and channel
ELSEVIER
Sedimentary Geology 127 (1999) 111–118
Discussion
Deep-water massive sands:
facies, processes and channel geometry in the Numidian Flysch, Sicily
— comment
Olivier Parize a,Ł , Bemard Beaudoin a , Gérard Friès b
a
École Nationale Supérieure des Mines de Paris, CGES–Sédimentologie, 35 rue Saint-Honoré, 77300 Fontainebleau,France
b Elf-Aquitaine, Tour Elf, 92078 Paris–la Défense, France
Received 12 June 1998; accepted 25 January 1999
For the last 15 years, sedimentologists have been
trying to find outcrop analogues for subsurface deepwater massive sands. The recent paper by Johansson
et al. (1998) in Sedimentary Geology appears to be
very stimulating: it deals with massive sandstones
of the Sicilian Numidian Flysch, part of a formation
which crops out throughout the southern border of
the Western Mediterranean Sea (cf. fig. 1 of Johansson et al., 1998, taken from Hoyez, 1989).
However, we feel that the conclusions of the paper
are based on incomplete field observations and seem
to show that the authors remain unaware of recent
contributions on the subject. After some methodological comments, we will discuss successively the
feeding of the Numidian basin, the Numidian gravity
deposits, in particular massive sands, and at the end
the importance of the Numidian massive sands as
analogues for subsurface massive sands.
Johansson et al. (1998) write, as a postulate, that
in Sicily “there has been very little published on
the detailed sedimentology since the early papers
of Broquet (1970) and Wezel (1970a,b)”. They cite
Hoyez (1989), but ignore other significant contributions such as recent work by Geiss (1992), a student
of J.C. Faugères, and detailed works on the Numidian sandy dykes and sills and the paleogeography of
the basin which were published 10 years ago (see
Ł Corresponding
author. E-mail: [email protected]
reference lists in Hoyez, 1989 and Geiss, 1992, etc.):
Parize (1988), Parize and Beaudoin (1986a,b); Parize
and Beaudoin (1988) reported that sandy dykes and
sills in the Numidian are connected to channelized
massive sands and genetically associated with deposition of high-density flows.
1. The analysis of the turbiditic systems
The analysis of turbiditic systems is generally
based on a study of geometry of sandy bodies and
facies analysis. The 3D setting is essentially deduced
from the sole marks which indicate base and top of
beds, up- and down-current directions (e.g. Dzulynski and Walton, 1965; Lanteaume et al., 1967). The
first sedimentological analyses of flysch were based
on systematic measurements of sole marks (Crowell,
1955; Kuenen et al., 1957; Stanley, 1961; Hoyez,
1975, etc.). Today this type of analysis does not
suffice, but is still a prerequisite for any serious analysis of turbiditic systems (e.g. Bouma et al., 1985;
Mutti and Normark, 1987; Mutti, 1992; Pickering
et al., 1995). Sole mark analysis allows not only
the determination of the polarity of a bed, but also
the identification of two outcrops of the same age:
up-slope and down-slope, axial and lateral; it also
enables to determine whether the feeding of the sedimentary trap is transverse or longitudinal (Scott and
0037-0738/99/$ – see front matter  1999 Elsevier Science B.V. All rights reserved.
PII: S 0 0 3 7 - 0 7 3 8 ( 9 9 ) 0 0 0 1 9 - 6
112
Discussion / Sedimentary Geology 127 (1999) 111–118
Tillman, 1981). Johansson et al. (1998), however, did
not use sole marks in their analysis.
Two examples cited by Johansson et al. (1998)
are troublesomely unclear. The first one, the Pollina
Gorge panorama (their fig. 12, redrawn from Geiss,
1992) is not paleogeographically situated and therefore cannot be used for the Numidian basin analysis.
The second example, the Ponte Finale panorama
(their fig. 9) and the detailed correlations (their fig.
10, redrawn from Geiss, 1992) are perpendicular to
each other and are presented as channels: it is most
unlikely that there are two perpendicular turbiditic
channel directions in such a small localized area.
Time control is the second important issue in
any basin analysis. Johansson et al.’s description
of the sequence is missing some fundamental data
which induce erroneous correlations: they assigned
a more distal pattern to the Internal Numidian deposits than to the External zones. Biostratigraphic
data by Courme and Mascle (1988) indicate that the
Internal Numidian is not younger than the Middle
Oligocene and the Suprapanormide External Numidian extend from the uppermost Oligocene to the
Middle Miocene (Broquet, 1970; Courme and Mascle, 1988; Faugères et al., 1992). Therefore a distal=
proximal comparison of the two formations is not
justified; it would be like comparing the well known
Grès d’Annot Formation with the Alpine Miocene
Molasse!
Johansson et al. (1998) used stratigraphic data
to quantify sedimentation rate (ibid., p. 262) or to
compare a sequence succession with a eustatic chart.
However, the time constraints they give in their paper
are contradicting; e.g. Suprapanormide External Numidian outcrops dated as Early Miocene sensu lato
are related by Johansson et al. (1998) to the Chattian
sea-level drop.
Finally, Johansson et al. (1998, p. 251) distinguished “macro-, meso- and microsequences” which
are the sedimentary discontinuities never mentioned
on the logs. Such a hierarchy is however essential
(e.g. Mutti and Normark, 1987, 1991; Pickering et
al., 1995). The tectonic, eustatic, autocyclic, allocyclic phenomena (Johansson et al., 1998, p. 251)
remain undocumented in the paper: it is unclear
which criteria the authors used in order to recognise
these discontinuities.
2. The Numidian basin and its feeding
The feeding of the Numidian basin has been a
matter of intense debate as some authors worked on
sole marks and others on petrographic origin.
Gottis (1960) proposed northern feeding of
the Tunisian Numidian based on current direction
records. The detritic supply is firstly transverse and
then the sedimentary load is redistributed longitudinally east- or southeastward in the External Numidian of Sicily (Broquet, 1964, 1971–1972).
Later on, the southern feeding of the Numidian
basin was proposed. This idea found many followers
because it fitted well in the cylindric plate tectonics model (Wezel, 1970a; Durand-Delga, 1980). The
arguments for a Saharan source are based on granulometric and petrographic analyses of Numidian sandstones (Wezel, 1968, 1970b; Lancelot et al., 1977;
Hoyez, 1989, etc.). It is important to note that these
types of analyses are not conclusive (Coiffait, 1972)
and can even lead to contradicting conclusions (Caire
and Coiffait, 1970; Cassan et al., 1973, etc.). In this
respect, the paper of Johansson et al. (1998) adds to
the confusion.
Parize et al. (1986, citation in Hoyez, 1989 and
in Geiss, 1992) reported in the first paper on the
External Numidian of Geraci Siculo (Sicily) and the
Tunisian Numidian that the sole marks indicate the
northern provenance of the sandy material (some
observations near Geraci Siculo were made as close
as 100 m to fig. 18e of Johansson et al., 1998).
Since then, the same current directions were measured in many places of Tunisia (El Maherssi, 1992),
Morocco (El Khanchoufi and Beaudoin, 1990) or
Algeria (Laval, 1988) where locally a southern direction was measured by Vila et al. (1995). Two
IAS field-trips were devoted to these outcrops (El
Khanchoufi and Beaudoin, 1993; El Maherssi and
Beaudoin, 1996). The Numidian turbiditic systems
are channelizing, close to fan-deltas (El Maherssi,
1992). Johansson et al. (1998) appear unaware of
these recent works and their sedimentological and
petrographical implications (Fig. 1).
Discussion / Sedimentary Geology 127 (1999) 111–118
113
Fig. 1. Current directions (sole marks) in the Numidian sandstones, after Parize et al. (1986), Laval (1988), El Maherssi (1992), El
Khanchoufi and Beaudoin (1993) and El Maherssi and Beaudoin (1996). Main outcrops of Numidian flysch from Hoyez (1989).
3. The Numidian gravity flow deposits
The analysis of gravity flowdeposits and massive
sandstones by Johansson et al. (1998) poses two
questions: (1) on the relevance of the descriptions,
and (2) on the geometry of the depositional systems.
The Numidian thick sandstones were early interpreted as gravity flow for deposits (e.g. Gottis, 1960;
Wezel, 1968, 1970a,b; Hoyez, 1975, 1989), and not
only simple turbidites; in Sicily contourites were
also described in the shaly intervals (Wezel, 1970b;
Geiss, 1992; Faugères et al., 1992).
Our own observations enabled us to identify different facies (Parize and Beaudoin, 1986a,b; Parize,
1988). Johansson et al. (1998) have recognized turbidites, slumps and massive sandstones. Another
facies (‘fluxoturbidite’ in Wezel, 1970a,b, El Maherssi, 1992, El Khanchoufi and Beaudoin, 1993 and
El Maherssi and Beaudoin, 1996; analogous to ‘heterogeneous turbidites’ in Stanley, 1982 and Crémer,
1983) shows the continuous evolution from massive
or graded sandstones, coarse or not, to sandstones
with shaly or sandy–shaly clasts, to shaly–sandy
bodies organized or not in blocks, cut by sandy septa
which connect the sandy sole and roof of that sedi-
mentary body (Parize and Beaudoin, 1986b; Parize,
1988). This type of facies (Fig. 2) corresponds to the
sequence S7 of Geiss (1992) and cannot be simply
considered as ‘shale–clast conglomerates” (Johansson et al., 1998, p. 237) or simply divided into
sandstones and slumps according to the dominant
lithology.
All the Numidian sandy injections (including
the sandy septa) have been grouped by Johansson et al. (1998) as liquefaction features, due to
post-depositional and per-ascensum processes after
burial (Diller, 1889: discussion in Parize, 1988).
These oblique sandy objects (Gottis, 1953; Colaccichi, 1959; Beaudoin et al., 1984) have in fact to
be separated into three groups: septa (Fig. 2), perdescensum sills and dykes and per-ascensum dykes;
the last are only rarely found.
Detailed analysis of per-descensum sandy sills
and dykes reveals hundreds of these objects which
constitute true sedimentary bodies (Fig. 3). Dykes
are a few centimeters to a few decimeters thick,
penetrate the sediment over hundreds of meters, and
extend horizontally some hundreds of meters to one
kilometer. The majority of dykes are associated with
sedimentary sills. The sills are massive, without any
114
Discussion / Sedimentary Geology 127 (1999) 111–118
Fig. 2. Numidian heterogeneous turbidite (after Parize and Beaudoin, 1986b).
Fig. 3. Examples of Numidian clastic sills and dykes (from Parize, 1988): 1 D faults; 2 D clastic dykes; 3 D clastic sills.
Discussion / Sedimentary Geology 127 (1999) 111–118
primary sole marks (but with frequent frondescent
casts on the lower surface), and may be up to ten
meters thick. They extend laterally over a few square
kilometers. All these injections are related to massive
sandstone feeder channels, and took place from the
channel banks during sedimentation (Parize, 1988).
They are in fact a downstream facies of the channelizing massive sandstones (Parize et al., 1995, 1997).
The demonstration by Johansson et al. (1998)
of the channel character of the Numidian ‘barres’
and sandstone bodies does not seem rigorous. The
non-identification of the sandstone sills and heterogeneous turbidites questions their interpretation
of some of the so-called type A or type B channels. A part of the massive sandstones interpreted
as true deposits are probably injections, whereas
some sandstone lenses may not be erosive channel fillings but sandy envelopes of heterogeneous
turbidites. The geometry of the C type channels
is less constrained; these deep-water channels with
a massive filling are described in the jurassic Hareelv Formation in Greenland (Surlyk, 1987) or in
the Apto–Albian ‘Marnes Bleues’ of southeastern
France (Parize, 1988; Parize et al., 1995, 1997), in
relation to synsedimentary sandy injections (Beaudoin et al., 1983; Friès, 1987).
4. Deposition processes and the interest of the
Numidian as outcrop analogue
In the subsurface, the massive sands, without
any primary structure, can reach up to 400 ft (120
m) in thickness (Shanmugam et al., 1995; Imbert
et al., 1995a, etc.). In the abstract, Johansson et
al. (1998) highlight the “excellent examples of deepwater massive sands, i.e. very thick (4–25 m) units of
structureless sandstone”. These massive sands seem
to be correctly described only in the Contrada-diRomano area (ibid., p. 259) where their maximum
thickness is 25 m and these beds correspond to, in
fact, the amalgamation of “individual beds generally
1–4 m in thickness”, whose internal organization is
affected by post-depositional liquefaction. This leads
to some confusion: when were these sands massive?
Is this character due to post-depositional liquefaction
(Johansson et al., 1998, p. 259)? Were the sands
related to high-density current deposits and thus al-
115
ready massive when deposited (ibid., p. 264)? Or
“perhaps the most likely (is : : : ) gradual aggradation
beneath steady or near steady flows” (ibid., p. 264).
According to Johansson et al. (1998, p. 264),
“post-depositional liquefaction and partial remobilisation of thick sandstones bodies has led to sandstone injection”. Our observations indicate that the
main sandy injections are synsedimentary (Parize,
1988; Parize and Beaudoin, 1988) and they would be
related to the depositional processes of the massive
sands which are, in fact, feeding these injections.
The lack of primary structures in the subsurface
massive sands is the main cause of debate (e.g. Shanmugam et al., 1994, 1995, 1997; Shanmugam and
Moiola, 1995, 1997; Slatt et al., 1997; Lowe, 1997;
Coleman, 1997; Bouma et al., 1997; D’Agostino and
Jordan, 1997; Hiscott et al., 1997). The first question
about them would be: why are they massive? To
solve this simple question, it is necessary to compare
them with the sand source, which is difficult to find
in the foredeep basins. In spite of the lack of data, Johansson et al. (1998, p. 264) proposed “high density
turbidity currents associated with probable slumps
and debris flows” as a transport mechanism already
evoked by Shanmugam et al. (1994, 1995). However,
they did not answer the basic question concerning
the massive sands: why are they massive?
Before the paper by Johansson et al. (1998), massive sands were a subject of a debate, partly due to
the lack of outcrop analogues. We think that Johansson et al. (1998) give few original elements for the
understanding of massive sands and their paper may
spread confusion because of the lack of dynamic perception of turbiditic systems. However, we remain
confident that better analogues for massive sands
will be found perhaps in the Aptian–Albian outcrops
of southeastern France (Imbert et al., 1995b, 1997;
Parize et al., 1995, 1997).
Acknowledgements
G.P. Allen† (TOTAL, then Brisbane University)
has encouraged us to discuss the Johansson et al.’s
paper. We thank E. Mutti (Parma University) for
bringing to our attention Numidian deposit regional
setting, and B. Geiss and J.L. Rubino (TOTAL)
for their helpful comments. The study on Numidian
116
Discussion / Sedimentary Geology 127 (1999) 111–118
and Vocontian clastic dykes and sills was funded
by ANDRA and Gis GénéBass (ELF, TOTAL and
CNRS). The recent studies on Vocontian massive
sands (OP) were supported by TOTAL.
References
Beaudoin, B., Friès, G., Joseph, P., Paternoster, B., 1983. Sills
gréseux sédimentaires injectés dans l’Aptien supérieur de
Rosans (Hautes-Alpes). C. R. Acad. Sci. Paris 296, 387–
392.
Beaudoin, B., Friès, G., Parize, O., Pinault, M., 1984. Fracturation précoce en Sicile nord-orientale: les sills et dykes
sédimentaires numidiens. Comm. Abstr. 5th Eur. Reg. Meet.
Sedimentol., Marseille, pp. 49–50.
Bouma, H.A., Normark, W.R., Barnes, N.E. (Eds.), 1985. Submarine Fans and Related Turbidite Systems. Frontiers in Sedimentary Geology, Springer, New York, NY, 351 pp.
Bouma, A.H., DeVries, M.B., Stone, C.G., 1997. Reinterpretation of depositional processes in a classic flysch sequence (Pennsylvanian Jackfork Group), Ouachita Mountains,
Arkansas and Oklahoma: discussion. Am. Assoc. Pet. Geol.
Bull. 81, 470–472.
Broquet, P., 1964. Observations stratigraphiques, tectoniques
et sédimentologiques sur Ie flysch numidien des Madonies
(Sicile). Ann. Soc. Géol. Nord, Lille 84, 141–152.
Broquet, P., 1970. The geology of the Madonies Mountains of
Sicily. Pet. Explor. Soc. Libya, Tripoli, pp. 201–230.
Broquet, P., 1971–1972. Thèse géologique de la région des
Madonies (Sicile). Thèse Doct. Sci., Univ. Lille, 1968, 797
pp. Première partie: Étude stratigraphique, 1971, IRES Publ.,
Palermo, 333 pp. Deuxième partie: Sédimentologie et tectonique, 1972, Geol. Rom. 11, pp. 1–114.
Caire, A., Coiffait, P.E., 1970. Les dragées de quartz du flysch
numidien viennent de la province sarde et non pas de la
province saharienne. C. R. Acad. Sci. Paris 270, 3181–3183.
Cassan, J.P., Mathieu, M., Tchimichkian, C., Cazes, M., Dondon,
J., 1973. Contribution à l’étude de I’Oligo–Miocène tunisien.
Origine des apports et milieu de dépôt des séries détritiques.
In: Livre jubilaire M. Solignac. Ann. Mines Geol. Tunis 26,
233–239.
Coiffait, P.E., 1972. Nouvelles données sur la thermoluminescence naturelle (TLN) de sédiments oligo-miocènes de Tunesie. C. R. Somm. Soc. Géol. Fr. Paris 2, 79–82.
Colaccichi, R., 1959. Dicchi sedimentari del flysch
oligomiocenico della Sicilia Nord Orientale. Eclogae Geol.
Helv. 51, 901–916.
Coleman, J.L., 1997. Reinterpretation of depositional processes
in a classic flysch sequence (Pennsylvanian Jackfork Group),
Ouachita mountains, Arkansas and Oklahoma: discussion. Am.
Assoc. Pet. Geol. Bull. 81, 466–469.
Courme, M.D., Mascle, G., 1988. Nouvelles données stratigraphiques sur les séries oligomiocènes des unités siciliennes:
conséquences paléogéographiques. Bull. Soc. Géol. Fr. 4,
105–118.
Crémer, M., 1983. Approches sédimentologique et géophysique
des accumulations turbiditiques. L’éventail profond du Cap
Ferret (Golfe de Gascogne), la série des grès d’Annot
(Alpes-de-Haute-Provence). Thèse Doct. Sci., Univ. Bordeaux
I, Rapp. Inst. Fr. Petr. Rueil-Malmaison, No. 32036, 344 pp.
Crowell, J.C., 1955. Directional-current structures from the prealpine flysch, Switzerland. Bull. Soc. Geol. Am. 66, 1351–
1384.
D’Agostino, A.E., Jordan, D.W., 1997. Reinterpretation of depositional processes in a classic flysch sequence (Pennsylvanian
Jackfork Group), Ouachita mountains, Arkansas and oklahoma: discussion. Am. Assoc. Pet. Geol. Bull. 81, 473–475.
Diller, J.S., 1889. Sandstone dikes. Am. Soc. Geol. Bull. 1, 411–
442.
Durand-Delga, M., 1980. La Méditerrannée occidentale: étapes
de sa génèse et problèmes structuraux liés à celle-ci. In: Livre
jubilaire du Cent Cinquantenaire 1830–1980. Mém. H. S. Soc.
Géol. Fr. 10, 203–224.
Dzulynski, S., Walton, E.K., 1965. Sedimentary features of flysch and greywackes. Developments in Sedimentology 7, Elsevier, Amsterdam, 274 pp.
El Khanchoufi, A., Beaudoin, B., 1990. Sedimentological patterns of the Numidian flysch (Rif, N. Morocco). Comm. Abstr.
13th Int. Sedimentol. Congr., Nottingham.
El Khanchoufi, A., Beaudoin, B., 1993. Oligo–Miocene deposits
of Rif domain (Northern Morocco): sedimentology and paleogeography of Numidian facies. 14th Reg. Afr. Eur. Meet.
Sedimentol., Exc. B-7, Guide book, pp. 289–307.
El Maherssi, C., 1992. Dynamique de dépôt du flysch numidien de Tunisie (Oligo–Miocène). Thèse Doct. Géol. ENSMP,
Univ. Lille I. Mém. Sci. de la Terre, École des Mines de Paris,
No. 15, 246 pp.
El Maherssi, C., Beaudoin, B., 1996. Les dépôts gravitaires
Oligocène–Miocène inférieur du flysch numidien de Tunisie
septentrionale. 17th Reg. Afr. Eur. Meet. Sedimentol., Exc.
A-3, Guide book, pp. 41–67.
Faugères, J.C., Broquet, P., Duée, G., Imbert, P., 1992. Épisodes
volcano-sédimentaires et paléocourants dans le Numidien externe de Sicile: les tuffites et contourites de Karsa. C. R. Acad.
Sci. Paris, No. 315, 479–486.
Friès, G., 1987. Dynamique du bassin subalpin méridional de
l’Aptien au Cénomanien. Thèse Doct. Sci., Univ. Paris VI,
1986, Mém. Sci. de la Terre, École des Mines de Paris, No. 4,
370 pp.
Geiss, B., 1992. Corps sableux massifs en domaine marin profond: faciès, géométrie, processus et environnement de dépôts
à partir d’exemples pris dans Ie Numidien de Sicile (Miocène).
Mém. Dipl. Ét. Appl., Univ. Bordeaux 1, 24 pp.
Gottis, C., 1953. Les filons clastiques ‘intraformationnels’ du
‘flysch’ numidien tunisien. Bull. Soc. Géol. Fr. 3, 775–783.
Gottis, C., 1960. Statigraphie, structure et évolution structurale
de la Kroumirie et de ses bordures. In: Livre à la mémoire du
Professeur Paul Fallot. Mém. Soc. Géol. Fr., pp. 645–656.
Hiscott, R.N., Pickering, K.T., Bouma, A.H., Hand, B.M.
Kneller, B.C., Postma, G., Soh, W., 1997. Basin-floor fans
in the North Sea: sequence stratigraphic models vs. sedimen-
Discussion / Sedimentary Geology 127 (1999) 111–118
tary facies: discussion. Am. Assoc. Pet. Geol. Bull. 81, 662–
665.
Hoyez, B., 1975. Dispersion du matériel quartzeux dans les formations aquitaniennes de Tunisie septentrionale et d’Algérie
nord-occidentale. Bull. Soc. Géol. Fr. 27, 1147–1156.
Hoyez, B., 1989. Le Numidien et les flysch oligo–miocènes de la
bordure sud de la Méditerranée occidentale. Thèse Doct. Sci.,
Univ. Sci. Tech. Lille-Flandres-Artois, 459 pp. (unpubl.)
Imbert, P., Chaix, M., Olaussen, S., Parize, O., Rubino, J.-L.,
1995a. Deep water massive sands: sedimentological characters
from subsurface data, with special reference to reservoirs
from the North Sea. Comm. Abstr. 16th Eur. Reg. Meet.
Sedimentol., and 5th Fr. Meet. Sedimentol., Aix-les-Bains,
Mém. Fr. Assoc. Sédimentol. 22, 81.
Imbert, P., Parize, O., Rubino, J.-L., 1995b. Massive ‘turbidite’
sandstones in the Vocontian basin (South-East France): an
analogue for blocky ‘basin floor fan’ reservoirs. Comm. Abstr.
AAPG Int. Conf. Exhib., Nice, Bull. Am. Assoc. Pet. Geol. 79
(8), 1223.
Imbert, P., Parize, O., Rubino, J.-L., Sullivan, M., 1997. Les
sables massifs profonds, 2. Pourquoi massifs? Une histoire de
vannage et de liquéfaction (Deep-water massive sands, 2. Why
massive? A matter of winnowing and liquefaction). Comm.
Abstr. 6th Fr. Meet. Sedimentol. Montpellier, Mém. Fr. Assòc.
Sédimentol. 27, 143–144.
Johansson, M., Braakenbourg, N.E., Stow, D.A.V., Faugères,
J.C., 1998. Deep water massive sands: facies, processes and
channel geometry in the Numidian Flysch, Sicily. Sediment.
Geol. 115, 233–265.
Kuenen, P.H., Faure-Muret, A., Lantaume, M., Fallot, P., 1957.
Observations sur les flyschs des Alpes-Maritimes françaises et
italiennes. Bull. Soc. Géol. Fr. 7, 11–26.
Lancelot, J.R., Reille, J.L., Wezel, F.C., 1977. Étude morphologique et radiochronologique de zircons détritiques des
flyschs ‘numidien’ et ‘gréso-micacé’. Conséquences paléogéographiques à l’échelle de la Méditerranée occidentale. Bull.
Soc. Géol. Fr. 19, 773–780.
Lanteaume, M., Beaudoin, B., Campredon, R., 1967. Figures
sédimentaires du Flysch ‘Grès d’Annot’ du synclinal de PeiraCava. Publ. Sci. Cent. Natl. Rech. Sci., Paris, 97 pp.
Laval, F., 1988. Les flyschs nord-maghrébins dans les régions
kabyles d’Algérie. Dynamique sédimentaire et tectonique.
Thèse Doct. Sci., Univ. Nice, 252 pp. (unpubl.).
Lowe, D.L., 1997. Reinterpretation of depositional processes
in a classic flysch sequence (Pennsylvanian Jackfork Group),
Ouachita mountains, Arkansas and Oklahoma: discussion. Am.
Assoc. Pet. Geol. Bull. 81, 460–465.
Mutti, E., 1992. Turbidite Sandstones. AGIP and Inst. Geol.
Univ. Parma Publ., 275 pp.
Mutti, E., Normark, W.R., 1987. Comparing examples of modern and ancient turbidite systems: problem and concept. In:
Leggett, J.K., Zuffa, G.G. (Eds.). Marine Clastic Sedimentology. Concepts and Case Studies. Graham and Trotman,
London, pp. 1–38.
Mutti, E., Normark, W.R., 1991. An integrated approach to the
study of turbiditic systems. In: Weimer, P., Link, M.H. (Eds.),
Seismic Facies and Sedimentary Process of Submarine Fans
117
and Turbiditic Systems. Frontiers in Sedimentary Geology,
Springer, New York, NY, pp. 75–106.
Parize, O., 1988. Sills et dykes gréseux sédimentaires: paléomorphologie, fracturation précoce, injection et compaction. Thèse
Doct. Géol. ENSMP – Univ. Lille I, Mém. Sci. de la Terre,
École des Mines de Paris 7, 333 pp.
Parize, O., Beaudoin, B., 1986a. Les filons gréseux du Numidien
dans leur cadre paléomorphologique (Sicile et Tunisie). C. R.
Acad. Sci. Paris 304, 129–134.
Parize, O., Beaudoin, B., 1986b. Les filons gréseux sédimentaires du flysch numidien des régions de Tabarka (Tunisie) et
de Geraci Siculo (Sicile): fracturation précoce et paléomorphologie. Mem. Soc. Geol. Ital. 36, 243–253.
Parize, O., Beaudoin, B., 1988. Clastic dykes and sills from
Numidian Flysch (Sicily and Tunisia), sandy injection related
to a high density turbidity deposit. Comm. Abstr. AAPG Int.
Conf. Exhib., Nice, Am. Assoc. Pet. Geol. Bull. 72, 1018.
Parize, O., Beaudoin, B., Burollet, P.F., Cojan, I., Friès, G., Pinault, M., 1986. La provenance du matériel gréseux numidien
est septentrionale (Sicile et Tunisie). C. R. Acad. Sci. Paris
303, 1671–1676.
Parize, O., Imbert, P., Rubino, J.L., 1995. Upper Aptian deep
water turbidites of the Vocontian basin (South-East France):
an outcrop analogue for deep water massive sandstones in the
North Sea. Comm. Abstr. 16th Eur. Reg. Meet. Sedimentol.
and 5th Fr. Meet. Sedimentol., Aix-les-Bains, Mém. Fr. Assoc.
Sédimentol. 22, 116.
Parize, O., Imbert, P., Rubino, J.L., 1997. Les sables massifs profonds, 1. Un modèle à l’affleurement: l’Apto–Albien du bassin
vocontien (SE France) (Deep-water massive sands, 1. The
Vocontian model). Comm. Abstr. 6th Fr. Meet. Sedimentol.
Montpellier, Mém. Fr. Assoc. Sédimentol. 27, 213–214.
Pickering, K.T., Hiscott, R.N., Kenyon, N.H., Ricci Lucchi, F.,
Smith, R.D.A. (Eds.), 1995. Atlas of Deep Water Environment.
Architectural Style in Turbidite Systems. CONOCO, Chapman
and Hall, London, 333 pp.
Scott, R.M., Tillman, R.W., 1981. Stevens sandstone (Miocene),
San Joaquin basin, California. In: Siemers, C.T., Tillman,
R.W., Williamson, C.R. (Eds.). Deep-water Clastic Sediments.
Soc. Econ. Paleontol. Mineral. Core Workshop 2, 116–248.
Shanmugam, C., Moiola, R.J., 1995. Reinterpretation of depositional processes in a classic flysch sequence (Pennsylvanian
Jackfork Group), Ouachita mountains, Arkansas and Oklahoma. Am. Assoc. Pet. Geol. Bull. 79, 672–695.
Shanmugam, G., Moiola, R.J., 1997. Reinterpretation of depositional processes in a classic flysch sequence (Pennsylvanian
Jackfork Group), Ouachita mountains, Arkansas and Oklahoma: reply. Am. Assoc. Pet. Geol. Bull. 81, 476–491.
Shanmugam, G., Lehtonen, L.R., Straume, T., Syvertsen, S.E.,
Hodgkinson, R.J., Skibeli, M., 1994. Slumps and debris-flow
dominated upper slope facies in the Cretaceous of the Norvegian and Northern North Seas (61º–67ºN): implication for sand
distribution. Am. Assoc. Pet. Geol. Bull. 78, 910–937.
Shanmugam, G., Bloch, R.B., Mitchell, S.M., Beamish, G.W.J.,
Hodgkinson, R.J., Dasmuth, J.E., Straume, T., Syvertsen, S.E.,
Shields, K.E., 1995. Basin-floor fans in the North Sea: se-
118
Discussion / Sedimentary Geology 127 (1999) 111–118
quence stratigraphic models vs. sedimentary facies. Am. Assoc. Pet. Geol. Bull. 79, 477–512.
Shanmugam, G., Bloch, R.B., Dasmuth, J.E., Hodgkinson, R.J.,
1997. Basin-floor fans in the North Sea; sequence stratigraphic
models vs. sedimentary facies: reply. Am. Assoc. Pet. Geol.
Bull. 81 (4), 666–672.
Slatt, R.M., Weiner, P., Stone, C.G., 1997. Reinterpretation of
depositional processes in a classic flysch sequence (Pennsylvanian Jackfork Group), Ouachita mountains, Arkansas and
Oklahoma: discussion. Am. Assoc. Pet. Geol. Bull. 81, 449–
459.
Stanley, D.J., 1961. Études sédimentologiques des Grès d’Annot
et de leurs équivalents latéraux. Thèse Doct. Géol., Univ.
Grenoble, Rapp. Inst. Fr. Pet., Rueil-Malmaison, No. 6821,
158 pp.
Stanley, D.J., 1982. Welded slump-graded sand couplets: evidence for slide generated turbidity currents. Geo-Mar. Lett. 2,
149–155.
Surlyk, F., 1987. Slope and deep shelf gully sandstones, Upper
Jurassic, East Greenland. Am. Assoc. Pet. Geol. Bull. 71,
464–475.
Vila, J.M., Feinberg, H., Lahondère, J.C., Gourinard, Y.,
Chouabbi, A., Magné, J., Durand-Delga, M., 1995. Le chenal
gréseux de l’Oligocène terminal et le Miocène de Sidi Affif
dans leur cadre structural est-algérien: origine saharienne du
Numidien et calendrier des charriages miocènes. C. R. Acad.
Sci. Paris 320, 1001–1009.
Wezel, F.C., 1968. Osservazioni sui sedimenti dell’oligocene–
miocene inferiore della Tunisia settentrionale. Mem. Soc.
Geol. Ital. 7, 417–439.
Wezel, F.C., 1970a. Numidian flysch: an Oligocene–early
Miocene continental rise deposit off the African platform.
Nature 228, 275–276.
Wezel, F.C., 1970b. Geologia del flysch numidico della Siciha
nord-orientale. Mem. Soc. Geol. It. 9, 225–280.

Documents pareils