Fruit tree Research and Development Institute, Pitesti

Transcription

Fruit tree Research and Development Institute, Pitesti
WG
C - adaptation to climate change
Partner
P11 - NMA
Promoter
!"#$%&'(&)*%+,$%-.&/
- Fruit tree Research and Development Institute, Pitesti-Maracineni, RO – Coordinator (www.icdp.ro)
- National Meteorological Administration, Bucharest, RO - P 10
0%!1+&+%$$&2$-$*%34&*,5&6$7$8')"$,+&9,-+1+!+$:&;1+$-+1<=*%*31,$,1:&!-$&+4$&%$-!8+-&1,&'#+*1,1,>&-)$31?3&>$,'+@)$&'(&(%!1+&
trees (apricot, peach) with high adaptability to climate change.
Project
18 - Assessment of potential impacts of climate change on agroclimatic zoning in Romania
!"# "$%&#'"!($)&%!*+#,)"!*-./#01234,054632#'"!78)&
Type
*+1',*8&;%'>%*""$&'(&2$-$*%34&ABCCD&<&BCEFG
H4$"*+13&*%$*.&I>%13!8+!%$&*,5&(''5&-*($+@J&H4$&)%'+$3+1',&'(&,*+!%*8&%$-'!%3$-&
Period
BCCD&<&BCEC
Location
Romania
Target
Decision factors, fruit research institutes, farmers
Level
National Research Project
Contact
Dr. Emil Chitu/team leader of the project - '(?3$K135)<)1+$-+1J%'/[email protected]
Dr. Elena Mateescu/NMA - [email protected]
Project description
The main objective of this project was based on the computation of the various thermal indices
-)$31?3&+'&+4$&(%!1+&+%$$&-)$31$-:&('%&#'+4&+4$&3!%%$,+&AELME<BCCDG&*,5&+4$&(!+!%$&ABC/C&*,5&
BCNCG&381"*+$&3',51+1',-:&(%'"&*>%'"$+$'%'8'>13*8&-+*+1',-&-1+!*+$5&1,&O*88*341*:&*-&P$88&*-&
a case study for Pitesti area. Thus, for the current climatic conditions, there were used the daily
7*8!$-&'(&+4$&"$*,&+$")$%*+!%$-&%$3'%5$5&1,&+4$&ELME<BCCD&1,+$%7*8:&P4$%$*-&('%&+4$&(!+!%$&
climatic evolution, two scenarios of the possible climate change were used.
Results obtained
I33'%51,>&+'&+4$&*--$--"$,+-&51-)8*@$5&1,&+4$&0'!%+4&9;QQ&2$)'%+&ABCCDG:&2'"*,1*&$R)$3+-&*&
mean annual warming of the same magnitude as the one projected at European level against
+4$&ELNC<ELLC&#*-$81,$:&P1+4&-"*88&51(($%$,3$-&#$+P$$,&"'5$8-&1,&+4$&?%-+&5$3*5$-&'(&+4$&BEst
3$,+!%@&*,5&"!34&>%$*+$%&+'P*%5-&+4$&$,5&'(&+4$&3$,+!%@.&#$+P$$,&C:STQ&*,5&E:STQ&('%&+4$&
BCBC<BCBL&)$%1'5&*,5&#$+P$$,&B:CTQ&*,5&S:CTQ&('%&BCLC<BCLL:&(!,3+1',&',&+4$&-3$,*%1'J
The growth and development rhythm of the phenological phases in the fruit tree species differentiates function of the demands for heat; the
1,+$,-1+@&'(&+4$&)4@-1'8'>13*8&)%'3$--$-:&#$1,>&51%$3+8@&3'%%$8*+$5&P1+4&+4$&$7'8!+1',&'(&+4$&+4$%"*8&(*3+'%&#$+P$$,&3$%+*1,&+4%$-4'85-&-)$31?3&+'&
$*34&>$,'+@)$J&9,&'+4$%&P'%5-:&+4$&1,U!$,3$&'(&+4$&+4$%"*8&(*3+'%&',&+4$&-!33$--1',&'(&+4$&>%'P+4&*,5&5$7$8')"$,+&)4$,')4*-$-&)%$7*18-J
The heat necessity of the fruit trees for undergoing the phenophases is determined through computing the sum of active temperature degrees,
@1$85$5&#@&-!""1,><!)&+4$&"$*,&5*18@&+$")$%*+!%$-&*#'7$&+4$&#1'8'>13*8&+4%$-4'85&-)$31?3&+'&$*34&(%!1+&+%$$&-)$31$-J
For the bud bursting phase to initiate an amount of mean positive temperatures of 100°C is necessary, expressed through heat units – values
computed year by year, from 1 February until the mentioned thermal threshold is reached. In the current climatic conditions, the bud bursting
)4*-$&>$,$%*88@&'33!%-&1,&+4$&(%!1+&+%$$&)8*,+*+1',-&&(%'"&O*88*341*&1,&+4$&-$3',5&EC<5*@&)$%1'5&'(&=*%34&AEE<BC&=*%34G:&+4$&$*%81$-+&5*+$&
#$1,>&%$3'%5$5&*+&Q*8*%*-1&AEE&=*%34G&*,5&+4$&8*+$-+&ABC&=*%34G&*+&Q!%+$*&5$&I%>$-J&V,5$%&+4$&31%3!"-+*,3$-&'(&+4$&)'--1#8$&381"*+$&34*,>$:&
+4$&#!5&#!%-+1,>&P188&'33!%&"!34&$*%81$%:&*-&3'")*%$5&+'&+4$&3!%%$,+&)$%1'5:&1J$J&#@&B<N&5*@-&A#$+P$$,&D&*,5&EN&=*%34G:&1(&+4$&+$")$%*+!%$&
1,3%$*-$-&#@&ETQ&*,5&#@&N<EB&5*@-&A#$+P$$,&F&*,5&EE&=*%34G&1(&+4$&+$")$%*+!%$&1,3%$*-$-&#@&BTQJ&H4$&8*%>$-+&51(($%$,3$-&1,&+4$&'33!%%$,3$&
'(&+41-&)4*-$:&'(&EC<EB&5*@-:&#$+P$$,&+4$&3!%%$,+&381"*+$&*,5&+4$&+P'&-3$,*%1'-&*%$&%$3'%5$5&*+&;1+$-+1:&;8'1$-+1&W%171+*&*,5&2*",13!&X*%*+&
stations.
Success factors
9,&+4$&(%!1+&+%$$&)8*,+*+1',-&(%'"&O*88*341*:&+4$&'33!%%$,3$&5*+$&'(&+4$&U'P$%1,>&)4*-$&*+&+4$&)$*%&+%$$:&$R)%$--$5&*-&"$*,&"!8+1*,,!*8&7*8!$-:&
%*,>$-&(%'"&EC&+'&BE&I)%18:&+4$&)%$7*181,>&1,+$%7*8&#$1,>&E/<ED&I)%18&1,&"'-+&)*%+&'(&+4$&%$>1',J&I+&Q*8*%*-1:&+4$&)$*%&+%$$&U'P$%1,>&1-&%$3'%5$5&
132
',&+4$&*7$%*>$&',&EC&I)%18:&*,5&+4$&8*+$-+&)$*%&+%$$&U'P$%1,>&5*+$&1-&%$3'%5$5&*+&Q!%+$*&5$&I%>$-:&BE&I)%18J&I8-':&*+&Q*8*%*-1:&+4$&$*%81$-+&
)$*%&+%$$&U'P$%1,>&5*+$&'33!%%$5&1,&BCCB&AE/&=*%34G&*,5&+4$&8*+$-+&1,&ELLM&ABN&I)%18GJ&I+&Q!%+$*&5$&I%>$-:&+4$&$*%81$-+&-!34&5*+$&P*-&F&
I)%18:&1,&ELLC:&*,5&+4$&8*+$-+&P*-&D&=*@:&1,&ELMSJ& '+$P'%+4@&+4*+&*+&Q!%+$*&5$&I%>$-&A1,&,'%+4<P$-+$%,&O*88*341*G&1,&ELMS:&ELML:&ELNB:&
ELLM:&ELLD&*,5&BCCF&+4$&)$*%&+%$$&U'P$%1,>&P*-&1,1+1*+$5&1,&+4$&?%-+&EC<5*@&)$%1'5&'(&=*@&A#$+P$$,&E&*,5&D&=*@G:&P4134&P$%$&+4$&8*+$-+&
'33!%%$,3$&5*+$-&('%&+4$&P4'8$&*%$*:&$R3$)+&('%&+4$&@$*%&ELML:&P4$,&+4$&)$*%&+%$$&U'P$%1,>&P*-&1,1+1*+$5&*+&H*%>'71-+$&',&B&=*@&*,5&*8-'&
ELLM:&P4$,&W%171+*&-+*+1',&%$3'%5$5&+4$&*33!"!8*+1',&'(&FSC&4$*+&!,1+-&',&E&=*@&A+4$%"*8&+4%$-4'85&('%&)$*%&+%$$&U'P$%1,>&H"$*, 0°= 350
4$*+&!,1+-&-+*%+1,>&E&0$#%!*%@GJ&V,5$%&+4$&31%3!"-+*,3$-&'(&+4$&+P'&*%#1+%*%@&-3$,*%1'-:&U'P$%1,>&*+&+4$&)8!"&+%$$&-)$31$-&1,&O*88*341*&"*@&
occur by at least 3 to 10 days as compared to the current period over the whole of the analysed area.
The air temperature and precipitation multiannual monthly mean, in baseline (1961-1990) climatic conditions and under the circumstances of
2$>Q=F&%$>1',*8&381"*+13&)%$513+1',-&('%&+4$&BCBC<BCSC&)$%1'5:&+4$&X2YX&IEZ&-3$,*%1'J
I33'%51,>&+'&+4$&381"*+13&)%$513+1',-&1,&+41-&-3$,*%1':&+4$&"$*,&*,,!*8&*1%&+$")$%*+!%$&P188&%1-$&#@&C:DTQ&*+&;1+$-+1&1,&+4$&BCBC<BCSC&)$%1'5&
against the current period, the largest increases being likely in the warm period of the year, i.e. in April through August (1,1°C/April, 1,6°C/
=*@:&B:MTQ[\!,$:&B:NTQ[\!8@&*,5&E:CTQ[I!>!-+GJ&I,,!*8&)%$31)1+*+1',&P188&5P1,58$&#@&LE:E&""&',&+4$&*7$%*>$&AEF:S]&,$>*+17$&5$71*+1',G:&
the largest decreases being again estimated to occur in the warm season, namely by 7,5 mm less in April and as much as 47,4 mm less in
June, compared to the current climate.
O4$,&!-1,>&+4$&*%#1+%*%@&-3$,*%1'-:&+4$&*,*8@-1-&'(&+4$&"$*,&"!8+1*,,!*8&'33!%%$,3$&5*+$-&'(&+4$&#!5&#!%-+1,>&*,5&U'P$%1,>&)4*-$-&*+&;1+$-+1:&
at all the studied fruit tree species, highlights that those dates will occur earlier by 4-8 days on the average, in the scenario where the mean air
+$")$%*+!%$&P188&%1-$&#@&ETQ&*,5&#@&L<EB&5*@-&1(&+4$&+$")$%*+!%$&%1-$-&#@&BTQ&*>*1,-+&+4$&3!%%$,+&381"*+$J&I8-':&',&+4$&#*3^>%'!,5&'(&+4$&"$*,&
air temperature increasing trend, an increase of the amount of the heat units is estimated in the 1 February – 10 April interval against the current
7*8!$-&#@&EN:D]&1,&BC/C&*,5&#@&FN:/]&#@&BCNC:&P4134&)'1,+-&*+&*,&$*%8@&'%&$7$,&7$%@&$*%8@&-)%1,>&3'"1,>:&P1+4&1")8131+&*!>"$,+$5&%1-^&
implied by the late spring frosts.
Indicators used
H4$&P'%^&"$+4'5'8'>@&P*-&#*-$5&',&+4$&3'")!+*+1',&'(&+4$&7*%1'!-&+4$%"*8&1,513$-&-)$31?3&+'&+4$&(%!1+&+%$$&-)$31$-:&('%&#'+4&+4$&3!%%$,+&
AELME<BCCDG&*,5&+4$&(!+!%$&ABC/C&*,5&BCNCG&381"*+$&3',51+1',-:&(%'"&*>%'"$+$'%'8'>13*8&-+*+1',-&-1+!*+$5&1,&O*88*341*:&*-&P$88&*-&*&
case study for Pitesti area. Thus, for the current climatic conditions, there were used the daily values of the mean temperatures recorded in the
ELME<BCCD&1,+$%7*8:&P4$%$*-&('%&+4$&(!+!%$&381"*+13&$7'8!+1',:&+P'&-3$,*%1'-&P$%$&!-$5&'(&+4$&)'--1#8$&381"*+$&34*,>$J&9")*3+&-+!51$-&3*%%1$5&
'!+&*+&1,+$%,*+1',*8&*,5&,*+1',*8&8$7$8-&!-$&+4%$$&+@)$-&'(&381"*+13&-3$,*%1'-.&-@,+4$+13&A*%#1+%*%@G&-3$,*%1'-:&-3$,*%1'-&#*-$5&',&*,*8'>!$-&*,5&
scenarios based on the outputs of the general circulation models. This study used two arbitrary scenarios, where the air temperature daily values
(%'"&+4$&3!%%$,+&381"*+$&*%$&*%#1+%*%@&"'51?$5&A1,3%$*-$5&#@&ETQ&*,5&BTQ&%$-)$3+17$8@G&*,5&%$>1',*8&381"*+13&)%$513+1',-&#@&2$>Q=F[BCBC&<&
BCSC[X2YX&IEZJ
Yielded products are outlined through thematic GIS maps at the level of Wallachia region comprising the mean multiannual data zoning as
%$>*%5-&+4$&#!551,>&'!+&*,5&U'P$%1,>&1,&+4$&*)%13'+:&)8!":&)$*%&*,5&*))8$&+%$$&-)$31$-&%$-)$3+17$8@:&*-&P$88&*-&+4$&-)%1,>&3'"1,>&1,5$R:&1,&
71$P&+'&5$+$%"1,$&+4$&(!8?88"$,+&1,+$%7*8-:&*8',>&P1+4&+4$&$*%81$-+[8*+$-+&'33!%%$,3$&5*+$-&'(&+4'-$&$7$,+-:&#'+4&('%&+4$&#*-$81,$&381"*+$&AELME&
<BCC/G&*,5&('%&+4$&(!+!%$&',$&ABC/C&*,5&BCNC&5$3*5$-&%$-)$3+17$8@GJ
Repeatability and Applicability
H4$&)%'_$3+&"*@&#$&$R)*,5$5&+'&'+4$%&*%$*-&'(&+4$&3'!,+%@&*(($3+$5&#@&381"*+$&34*,>$J&V-1,>&381"*+13&1,513*+'%-&_!-+1?$-&-)$31*81`*+1',&'(&
agricultural production in the context of climate change and the early varieties with increased resistance to drought and high temperatures in
summer or cold winter.
Total costs
460.000 €.
Further references
O$#&)*>$.&www.icdp.ro/ro-index.php?target=ro-climpactpomi-info
;!#813*+1',-.&<&Y8$,*&=*+$$-3!:&I5%1*,*&=*%13*:&6J&I8$R*,5%!&ABCCLG&a&bQ81"*+$&34*,>$&1")*3+&',&(%!1+&>%'P1,>&)%'5!3+1',c:&;%'3$$51,>-&
2J9J0JWJ;1+$-+1:&d'8J&eed:&BCCL:&9XX &ESN/<BBFE:&Y51+!%*&9 dYf<=VfH9=Y69I&X2f:&))J&ND<ECCJ
133
PITESTI
Multi-annual monthly means of rainfall amounts
PITESTI
Multi-annual monthly means of air temperature
26
24
22
20
18
16
14
12
10
8
6
4
2
0
-2
-4
100
90
80
70
60
mm 50
40
30
Tmean 1961-1990
Tmean 2020-2050
20
Rainfall 1961-1990
10
Rainfall 2020-2050
0
I
II
III
IV
V
VI
VII VIII
IX
X
XI
XII
I
II
III
IV
V
VI
VII VIII
IX
X
XI
XII
Mean monthly multiannual air temperature and precipitation amounts in baseline climatic conditions
(1961-1990) and under the regional climatic predictions by RegCM3/2020-2050/SRES A1B (Source: NMA).
PITESTI/mean date of bud bursting phase occorrence
- current period / 19 March
<&BC/C&5$3*5$&[&EE&"*%34&A<N&5*@-G
<&BCNC&5$3*5$&BCNC&[&D&"*%34&A<EB&5*@-G
Zoning of bud bursting date at the fruit tree species from Wallachia in the current climatic conditions and in the two scenarios foreseen for the 2040 and 2080
decades (Source: NMA)
134

Documents pareils