homogeneous zonal distributions

Transcription

homogeneous zonal distributions
Convolution on homogeneous spaces
Capelle, Johan
IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to
cite from it. Please check the document version below.
Document Version
Publisher's PDF, also known as Version of record
Publication date:
1996
Link to publication in University of Groningen/UMCG research database
Citation for published version (APA):
Capelle, J. (1996). Convolution on homogeneous spaces Groningen: s.n.
Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).
Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.
Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.
Download date: 11-02-2017
References
Bargmann, V. “Irreducible Unitary Representations of the Lorentz Group.” Annals of Mathematics
48 (1947), nº 3, 568-640.
Benabdallah, Abdel-Ilah. “l’Opérateur de Casimir de SL(2;Â).” Annales Scientifiques de l’École
Normale Supérieure, 4th series, 17 (1984), 269-291.
Blattner, R.J. "Positive Definite Measures." Proceedings AMS 14 (1963), 423-428.
Blyth, T.S. Module Theory; An Approach to Linear Algebra. Oxford: Clarendon Press, 1977.
Borel, Emile. Œuvres. Paris: Ed. du Centre National de la Recherche Scientifique, 1972.
Bourbaki, N. Éléments de Mathématique; Première Partie: Les Structures Fondamentale de
l’Analyse. Livre II: Algèbre. Livre III: Topologie Générale. Livre V: Espaces Vectoriels
Topologiques. (Paris: Hermann, 1940-1955).
Bruhat, F. “Sur les Representations Induites des Groupes de Lie.” Bull. Soc. Math. France 84 (1956),
97-205.
Capelle, Johan. “Families of Homogeneous Distributions.” Report. University of Groningen (the
Netherlands): Department of Mathematics, 1996.
Cartier, Pierre. “Vecteurs Différentiables dans les Représentations Unitaires des Groupes de Lie,”
Séminaire Bourbaki, 27e année, 1974/75, nû 454, 20-34.
Cérezo, A. and F. Rouvière. “Solution Élémentaire d’un Opérateur Différentiel Linéaire Invariant a
Gauche Sur un Groupe de Lie Réel Compact et Sur un Espace Homogène Réductif
Compact." Ann. Sci. École Norm.Sup. 4th series. 2 (1969), 561-581.
Dieudonné, J. and L. Schwartz. "La Dualité dans les Espaces (
ƒ
)
et (
¬ƒ
)."
Ann. Inst. Fourier
Grenoble, I (1949), 61-101.
van Dijk, G. “A Plancherel Formula for the Isotropic Cone.” Proceedings of the Koninklijke
Nederlandse Akademie van Wetenschappen. Series A, Vol . 91 (March 28, 1988) no. 1.
van Dijk, G. and M. Poel. “The Plancherel Formula for the Pseudo-Riemannian Space
).” Compositio Mathematica 58 (1986), 371-397.
SL(n;Â)/GL(n–1;Â
242
— References —
Dunkl, Charles F. & Donald E. Ramirez. Topics in Harmonic Analysis. Appleton-Century
Mathematics Series. New York: Meredith Corporation, 1971.
Ehrenpreis, Leon. “Solution of Some Problems of Division, Part II: Division by a Punctual
Distribution.” American Journal of Mathematics 77 (1955), 286-92.
Faraut, Jacques. “Distributions Sphériques sur les Espaces Hyperboliques.” Journal de
Mathématiques Pures et Appliquées 58 (1979), 369-444.
Gelfand, I.M., G.E.Shilow, M.I. Graev and N. Ya. Vilenkin. Generalized Functions. 5 Volumes.
Translated from the Russian. New York: Academic Press, 1964-1966.
Grothendieck, Alexandre. Produits Tensoriels Topologiques et Espaces Nucléaires. Memoirs of the
American Mathematical Society Nr 16. Providence, Rhode Island: American Mathematical
Society, 1955.
"Sur les Espaces
ƒ et ∂ƒ
."
Summa Brasiliensis Mathematicae, Vol 3, Fasc. 6, 1954.
Topological Vector Spaces. New York: Gordon & Breach, 1973.
Harzallah, Khélifa. ”Distributions Invariantes: Une Introduction.” Deux Courses d’Analyse
Harmonique, École d’Été d’Analyse Harmonique de Tunis, 1984. Stuttgart: Birkhäuser,
1987.
Helgason, Sigur∂ur. Differential Geometry and Symmetric Spaces. New York: Academic Press,
1962.
“Duality and Radon Transform for Symmetric Spaces.” Amer. J. Math. 85 (1963), 667692.
“Invariant Differential Operators and Eigenspace Representations.” Representation Theory
of Lie Groups; Proceedings of the SRC/LMS Research Symposium on Representations of
Lie Groups, Oxford, 28 June-15 July 1977. London Mathematical Society Lecture Note
Series 34. Cambridge: Cambridge University Press, 1979, pp. 236-286.
“Solvability of Invariant Differential Operators on Homogeneous Manifolds.” In
Differential Operators on Manifolds. Rome: C.I.M.E, cremoneze, 1975, 282-309.
Hörmander, Lars. The Amalysis of Partial Differential Operators; Part I: Distribution Theory and
Fourier Analysis. Berlin: Springer Verlag, 1983.
Humphreys, James E. Introduction to Lie Algebras and Representation Theory. GTM 9. New
York:Springer-Verlag, 1970.
243
— References —
Jantzen, Jens Carsten. Moduln Mit Einem Höchsten Gewicht. Lecture Notes in Mathematics Vol.
750. Berlin: Springer Verlag, 1979.
Klamer, Frans J.M. Group Representations in Hilbert Subspaces of a Locally Convex Space.
University of Groningen, Thesis. Meppel, Holland: Krips Repro, 1979.
Koornwinder, T.H. “Invariant Differential Operators on Non-Reductive Homogeneous Spaces,”
Report ZW 153/81. Amsterdam: Mathematical Centre, 1981.
“The Representation Theory of SL(2;Â); a Non-Infinitesimal Approach.” L’Enseignement
Mathématiques 2nd Series 28 (1982), 53-87.
Lichnerovicz, A. “Commutativité de l’Algèbre des Opérateurs Differentiels Invariants sur un Espace
Symétrique.” Battelle Rencontres:1967 Lectures in Mathematics and Physics. New York:
Benjamin, 1968.
Mackey, George W. Induced Representations of Groups and Quantum Mechanics. New York: W.A.
Benjamin, 1968.
Maurin, Krzysztof. General Eigenfunction Expansions and Unitary Representations of Topological
Groups. Warsaw:Polish Scientific Publishers, 1968.
Methée, P.D. “Sur les Distributions Invariantes dans le Groupe des Rotations de Lorentz.” Comment.
Math. Helv. 28 (1954), 224-269.
Narasimhan, R. Analysis on Real and Complex Manifolds. Advanced Studies in Pure Mathematics
Vol I. Amsterdam: North-Holland Publishing Company, 1968.
Nielsen, Niels. Handbuch der Gammafunction. Leipzig: Teubner, 1906.
Poel, Mannes and E.G.F Thomas. “Pullbacks en Invariante Distributies.” Report. University of
Groningen (the Netherlands): Department of Mathematics, 1987.
Poulsen, Niels Skovhus. “On
ç
°
–Vectors and Intertwining Bilinear Forms for Representations of
Lie Groups.” Journal of Functional Analysis 9 (1972), 87-120.
Reed, Michael and Barry Simon. Methods of Modern Mathematical Physics 4 Vols. New York:
Academic Press, 1972.
Rouvière, François. “Invariant Differential Equations on Certain Semi-Simple Lie Groups.”
Transactions of the American Mathematical Society Vol. 243, Sept. 1978, 97-114.
Schaefer, Helmut H. Topological Vector Spaces. New York: Macmillan Company, 1966.
Schlichtkrull, Henrik. Hyperfunctions and Harmonic Analysis on Symmetric Spaces. Progress in
244
— References —
Mathematics Series Vol. 49. Stuttgart: Birkhaüser Verlag, 1984.
Schwartz, Laurent. Thëorie des Distributions. Paris: Hermann, 1966.
Radon Measures on Arbitrary Topological Spaces and Cylindrical Measures. Tata Institute
of Fundamental Research. Oxford: Oxford University Press, 1973.
"Sous-espaces Hilbertiens d'Espaces Vectoriels Topologiques et Noyaux Associés (Noyaux
Reproduisants)." Jour. Anal. Math. 13 (1964), 115-256.
"Sous-espaces Hilbertiens et Noyaux Associés; Applications aux Répresentations des
Groupes de Lie." 2e Colloque C.B.R.M. sur l’Analyse Fonctionelle, Luik, 1964 , pp. 15363.
Sugiura, Mitsuo. Unitary Representations and Harmonic Analysis: An Introduction. Amsterdam:
North Holland, Tokyo: Kodansha, 1975, 2nd Ed. 1990.
Takeuchi, Masaru. Modern Spherical Functions. Providence, Rhode Island: American Mathematical
Society, 1991.
Tengstrand, A. “Distributions Invariant under an Orthogonal Group of Arbitrary Signature.” Math.
Scand. 8 (1960), 201-218.
Thomas, Erik G.F. “An Infinitesimal Characterization of Gelfand Pairs.” Contemporary Mathematics
Vol 26: Conference in Modern Analysis and Probability. Providence, Rhode Island: A. M.
S., 1984, 379-385.
“Integral Representations of Invariant Reproducing Kernels.” Proceedings Bicentennial
Congress Wiskundig Genootschap (Amsterdam 1978) Amsterdam: Mathematisch
Centrum, 1979. Part II, 391-404.
“Symmetric Closed Operators Commuting with a Unitary Type I Representation of Finite
Multiplicity are Self-Adjoint.” Illinois Journal of Mathematics 36, (1992), nº 4, 551-557.
"The Theorem of Bochner-Schwartz-Godement for Generalized Gelfand Pairs." Functional
Analysis and Recent Results III (North-Holland: Elsevier Science Publishers, 1984), 291304.
Trèves, François. Linear Partial Differential Equations with Constant Coefficients: Existence,
Approximation and Regularity of Solutions. New York: Gordon and Breach, 1966.
Topological Vector Spaces, Distributions and Kernels. London: Academic Press, 1967.
Varadarajan, V.S. Lie Groups, Lie Algebras, and their Representations. Berlin: Springer-Verlag,
1974.
245
— References —
Vilenkin, N.Ja. and A.U. Klimyk. Representation of Lie Groups and Special Functions. Three
Volumes. Mathematics and its Applications, Soviet Series. Dordrecht: Kluwer Academic
Publishers, 1991-93.
Wallach, Nolan R. Real Reductive Groups I, II. Pure and Applied Mathematics Vols. 132-I,II. New
York: Academic Press, 1988, 1992.
Warner, Garth. Harmonic Analysis on Semi-Simple Lie Groups I. Berlin:Springer-Verlag, 1972.
Weil, André. L'Intégration dans les Groupes Topologiques et ses Applications. Actualités
Scientifiques et Industrielles 1145. Paris: Hermann, 1965.
246
Glossary of Symbols
>
<
Italics indicate that the symbol is not in the
<
long list of fixed notations in Harmonic
Analysis
a~
a®
A
acting bilaterally
character of A
140
Lie algebra of A
convolution) operators in the
distributions
B
normalizer of
equal to MAN
(.␣|␣.)
´æ(≈)
´æ(≈
)␣%␣␣␣
139
algebra of G–invariant (or
å
‹
©␣≈
Ì
H
sesquilinear
75
duality brackets, bilinear
73
quotient of modular functions
117
compactly supported ç°–functions
on a manifold ≈
∂æ(≈)
dual of ´(≈)
H
31
zonal distributions with inversely
91
Â*
202
diffeomorphisms
106
group of G–invariant
%
usually denotes involution of zonal
sets
anti-duality brackets, sesquilinear 75
çµ
∂(≈)
40
compactly supported distributions,
character of
108
140
132
80
~
78, 92
128
compact supports
inner product in a Hilbert space,
<.␣,␣.>
<.␣|␣.>
<␣␣␣␣
smooth functions on ≈
140, 165, 196
139, 193
a
in H >: stabilizer of p in G >
<␣␣␣␣
´(≈)
␣special character of A
>
in G : extended group G*Ì,
20
or of zonal distributions
Ó
usually denotes a reproducing
Ó°
Ó–°
operator
35
¥
67
∂¥(≈) distributions on ≈ concentrated on
ç°– vectors
co–ç°–vectors
Hilb˚µ˚˚∂æ(≈)
G
distributions on the manifold ≈, dual
of ∂(≈)
93
89, 92
75
174
174
cone of †µ–invariant ␣ ␣Hilbert
G
subspaces of ∂æ(≈)
1
76
identity map, or identity character
æ
∂æ(≈)H zonal (i.e.: or H–invariant)
distributions, on ≈=G/H
∂æ(™)~,␣N
*
80
homogeneous zonal distributions
≈
Ω–homogeneous zonal distributions
213
indicator function of the set A
232
K
maximal compact subgroup 139, 193
k
139
Lie algebra of K
left and right regular translations in
the distributions on a group
209
]
*
ÈA
L,R
≈
∂æ(™)[¬,N
1,185
LG␣“E¡,E™‘ intertwining space
¬
symmetrizer map
Ò␣≈
family of homogeneous
65
74
13, 65
~
distributions
207
247
— Glossary of Symbols —
M
M*
fl
MAp
M
centralizer of A in K
normalizer of A in K
unitary dual of M
realization of the group
submanifold of
µ␣␣␣␣␣␣␣␣␣␣␣␣␣
©
140, 193
G/N
140, 194
≈
˜
µ
µ
148, 152
MA as
tu
¤™
141
operator, in a space of distributions,
of multiplication by the function
˜~
†g
†xU
©
space of matrix coefficients
153
the two-point group ”±1’
73
zonal
83
transpose of u
84
equals †gU␣, when
x=gp;
ambiguity resolved by U being
(complete) Hilbert tensor product of
two Hilbert spaces
61, 165
associated to ≈¤a~¤1
fl
unitarized version of †g
185
V¤∂
1¤T
ͤTº
Ÿ
201
202
202
usually denotes the anti-linear
relatively invariant measure on
N
ì
N
involution in the zonal distributions,
≈=G/H
72
maximal nilpotent subgroup139, 193
nilpotent group opposite to N
®
®µ
®Ì
#
Í
µ
ßs
*
%
Ë(g)
Lie algebra of N
139, 196
special weight
139, 196
algebra g
≈
203
generalized Verma module
148
140
modular function
117
≈
usually denotes a homogeneous
80
element group, or of Â*
185, 197
Sobolev space
228, 229
in W␣ *␣V
83
218, 219
: push-forward by ^
in ^* : pull-back by ^
in Â* : Â without the origin
in Ó* : anti-dual of Ó
in h* : adjoint of h
179
unitarized push-forward
101
55
56
75
75
operation of g∑G in the distributions
on ≈
space
ÛT
signum character of either a two-
73
13
unitarized right action of Â*
is usually the Weyl group
n
248
√~
W
in ^*
*
†g
v©
73
convolution product
127
universal algebra over the
modular function
Ÿ
û
U
complexification of the real Lie
U␣
ß␣
Ÿ=ì
U
141, 196
n
191
Ω
spectrum of the distribution T
228
algebra of central convolution
operators in ∂æ(≈)
134
INDEX
Italics indicate that the term or its particular
use is specific to the thesis
bi-invariant 131
bilaterally invariant
Hilbert subspace 128
convolution operator 128
Bruhat
Lemma (decomposition) 140
theory 169, 238n.
central
compactly supported zonal
distributions 134
convolution operators 134
contragredient 72
convolution
operator 83 &c.
algebra 19-20, 31, 88, 92, 134
°
co–ç –vector 174, 215
direct integral 76, 121, 129, 169, 170, 190
distribution vector 215
effective (action) 100
exchange property 102, 104, 183
fundamental solution 112-116, 159-164, 186187
Generalized Gelfand Pair 77, 105, 131, 172,
188
Hermitian
character 135
symmetry 98
Hilbert subspace 74, &c.
homogeneous
distribution 205-211
space 72 &c
induced
convolution operators
110-112, 120, 147
Hilbert subspace 120ff., 185
module 10-11, 30-31
inverselybounded or compact 91
Kelvin-inversion 183
kernel (theorem) 80
lattice cone 189, 223
Malgrange-Ehrenpreis 113, 160
multiplicity free
decomposition 129, 130, 170
representation 77, 172
Plancherel decomposition and measure 170,
190, 223
of positive type:
operators 75, 116-117
zonal distributions 116-117, 237
principal fibre bundle 108
propagator83
pull-back (of a distribution) 79, 101, 195
push-forward (of a distribution) 55, 63, 85
relatively invariant measure 73
reproducing operator 75
Schur’s Lemma
(for closeable operators) 137
Sobolev space 228
spectrum (of a distribution on K) 228
strongly zonal 128, 133, 156
symmetric (convolution operators) 211
symmetry 103
(Ë(g),B)–module 70, 148
unitarized
push-forward 101, 221
representation 73, 123
249
— Index —
Verma module 149
weakly symmetric 97-98, 103
Weil formula 81, 118
Weyl
group 140, 194
type 202-205
zonal 80, 83, 91
Ω–homogeneous 211
250