special - ALU

Transcription

special - ALU
OFFICIAL INTERNATIONAL
MEDIA SPONSOR
Special 2008
The international
smelting industry
Zero fuel baking –
the total heat
recovery concept
Auto control system
for quality casting
Norsk Hydro
Giesel Verlag GmbH · Postfach 120158 · D-30907 Isernhagen · www.alu-web.de – PVST H 13410 – Dt. Post AG – Entgelt bezahlt
OFFICIAL MEDIA PARTNER
Ebner: demanding heat
treatment applications
Volume 84 · January / February 2008
International Journal for Industry, Research and Application
1/2
Billets ready for shipment.
Continuous Homogenizing Plant.
Continuous
Homogenizing Plant
Continuous Homogenizing Plant.
We will exhibit at:
TMS 2008
137th Annual International
Meeting & Exhibition
Booth No. 708
March 9 to 13
New Orleans, Louisiana, USA
Leading technology in the aluminum casthouse.
There are many benefits in one-stop shopping –
even for industrial goods. Reliable, cooperative
planning, specifications, which meet exactly your
demands and individual service-packages to operate
on first-class level throughout the whole lifetime of
the plant – this can be realized by one of the most
experienced suppliers: Hertwich Engineering.
Major benefits
Hertwich Engineering is dedicated to leading technology in the aluminum casthouse. We add value
by designing integrated turnkey solutions. From
melting and remelting to testing and packing. The
results are convincing: highest quality of products
at lowest cost-of-ownership. This has been proven
by numerous plants all over the world.
Continuous Homogenizing Plant
Reliable, maximum homogenizing quality,
uniform for all billets
Lowest labour costs, full automation
Best log straightness, no deep surface marks
Extremly reliable operation, little down-time,
low repair costs
Lowest energy consumption, low power ratings
Flexibility of plant layout
More than 80 plants in operation
MEETING your EXPECTATIONS
HERTWICH ENGINEERING GMBH
Weinbergerstrasse 6
5280 Braunau, Austria
Phone: +43 (0) 7722 806-0
Fax:
+43 (0) 7722 806-122
E-mail: [email protected]
Internet: www.hertwich.com
EDITORIAL
Volker Karow
Chefredakteur
Editor in Chief
Die Aluminiumindustrie im Sog
der Globalisierung
The aluminium industry in the wake
of globalisation
ALUMINIUM · 1-2/2008
Die Globalisierung von Wirtschaft, Politik und Kultur ist in aller Munde. Neu
ist das Phänomen wahrlich nicht, man
denke nur an den einzigartigen Aufstieg der Fugger-Dynastie im 15./16.
Jahrhundert, der auf der Entwicklung
eines internationalen Handels- und
Bergbaugeschäftes gründete. Zweifellos nehmen sich diese frühen Ausprägungen der „Globalisierung“ bescheiden aus, verglichen mit denen unserer
Zeit. Interessant ist der historische
Rekurs dennoch: sind es doch gerade
in jüngster Zeit die Rohstoffkonzerne,
die wieder ins Blickfeld des Wirtschaftsgeschehens geraten, die zudem
weltumspannend agieren und zu den
höchst bewerteten zählen.
Auch die Aluminiumindustrie ist
in diesen Globalisierungstrend einbezogen – sowohl durch die Stoffströme
vom Bauxitabbau über die Metallproduktion bis hin zur Vermarktung
der Endprodukte als auch durch den
Konzentrationsprozess, der auf Unternehmensebene stattfindet und bei
dem es die internationalen Minengesellschaften sind, die derzeit das
Spiel diktieren. Dabei zeigt sich, dass
es entlang der Wertschöpfungskette
in der Aluminiumbranche durchaus
unterschiedliche Ausprägungen und
Arten der Globalisierung gibt. Je nach
den spezifischen Wettbewerbsfaktoren und Marktbedingungen sind ihre
treibenden Impulse bei Hüttenbetrieben andere als bei Halbzeugwerken
oder in der Endfertigung, wenngleich
das Streben nach Wachstum und Gewinnmaximierung schlussendlich bei
allen gleich ist.
Welche wirtschaftlichen Triebkräfte hinter der Globalisierung stehen,
welchen Veränderungen die Branche
in Zukunft ausgesetzt sein wird, ob
integrierte Aluminiumkonzerne ein
Auslaufmodell sind und kleine und
mittlere Unternehmen eine Überlebenschance in einer globalisierten
Wirtschaftswelt haben – diesen Fragen geht ein Beitrag von Bruno Rüttimann in dieser und der nächsten
Ausgabe der ALUMINIUM nach, auf
den an dieser Stelle besonders hingewiesen sein soll. Er bildet das Pendant
zu einem Überblicksartikel über die
Branchenaktivitäten des letzten Jahres nebst einer Reihe technisch orientierter Beiträge von namhaften Technologiepartnern und Ausrüstern der
Branche, die sich im Hütten-Special
wiederfinden.
Globalisation of the economy, politics
and culture is taking place all over
the world. True, the phenomenon is
not new: one need only think of the
unprecedented rise of the Fugger dynasty in the 15th and 16th centuries,
which was based on the development
of an international trading and mining
business. But there is no doubt that
those early forms of ‘globalisation’
were modest compared with what is
happening in our own times. Still, the
historical precedent is interesting: in
very recent times it is precisely the
raw materials concerns which are
again at the focus of economic interest, which moreover are active across
the world, and which are among the
most highly valued.
The aluminium industry too is
involved in this globalisation trend
– both due to the material flows
from bauxite mining, through metal
production and up to the marketing
of end products, and also due to the
concentration process that has been
taking place at corporate level and
in which it is the mining concerns
which now call the shots. In this, it is
evident that along the value-addition
chain in the aluminium industry there
are quite different forms and types of
globalisation. In accordance with the
specific competition factors and market conditions, the driving impulses
for smelter operation are different
from those of semis plants or for finished-goods production, even though
the striving for growth and maximum
profits is ultimately common to them
all.
What are the economic driving
forces behind globalisation, what
changes will the branch be exposed
to in times to come, are integrated aluminium concerns an outmoded concept and do small and medium-sized
enterprises have a chance to survive
in a globalised economic world?
These questions are dealt with in a
contribution by Bruno Rüttimann in
this and the next issue of ALUMINIUM, to which particular reference is
made at this point. It forms the pendant to a review article on the branch
activities of last year, besides a series
of technically orientated contributions by noted technology partners
and equipment suppliers of the aluminium branch, to be found in the
Special on smelting.
3
I N H A LT
EDITORIAL
Die Aluminiumindustrie im Sog der Globalisierung ....................... 3
A KT U E L L E S
Personen, Unternehmen, Märkte ............................................ 6
WIRTSCHAFT
28
Englischsprachige Artikel: s. nebenstehendes Verzeichnis
Aluminiumpreise ..............................................................
Produktionsdaten der deutschen Aluminiumindustrie ..................
ECCA: Produktion von beschichtetem Aluminiumband legt erneut zu
Otto Rudolf Fuchs begeht 80. Geburtstag ................................
EEG-Ausgleichsregelung für stromintensive Betriebe: Ersparnisse
von mehr als einer halben Milliarde Euro ................................
12
14
25
27
28
S P E C I A L 2 0 0 8 : D I E I N T E R N AT I O N A L E
ALUMINIUM-HÜTTENINDUSTRIE
Englischsprachige Artikel: s. nebenstehendes Verzeichnis ............. 30
M A R KT U N D T E CH N I K
48
Englischsprachige Artikel: s. nebenstehendes Verzeichnis
Ebner Industrieofenbau: Anspruchsvolle Anwendungen bei
der Wärmebehandlung / Interview mit der Geschäftsführung ........ 66
Siemens liefert Fertigstraße für Aluminium-Walzwerk nach China ... 73
U M W E LT U N D Ö K O L O G I E
Friedensnobelpreis für IPCC: Ein Quäntchen Ehre auch für
Halvor Kvande ................................................................. 79
BDI-Studie: CO 2 -Reduzierungspotenzial in NE-Branche nur zu
Lasten der Wettbewerbsfähigkeit möglich ............................... 82
I N T E R N AT I O N A L E B R A N C H E N N E W S ................... 83
56
FORSCHUNG
Englischsprachige Artikel: s. nebenstehendes Verzeichnis
Entstehung von CO 2 -Emissionen bei der Herstellung von
Aluminium-Walzprodukten vor dem Hintergrund des nationalen
Emissionshandelssystems ................................................... 96
V E R A N S TA LT U N G E N
RWTH Seminar: Einführung in die Technologie des Aluminiums .... 102
Termine, Fortbildung ........................................................ 103
D O K U M E N TAT I O N
64
Neue Bücher .................................................................. 100
Literaturservice ............................................................... 105
Patente ........................................................................ 108
Impressum .................................................................... 129
Vorschau....................................................................... 130
STELLENANGEBOT ............................................................... 89
Der ALUMINIUM-Branchentreff des
Giesel Verlags: www.alu-web.de
4
B E Z U G S Q U E L L E N V E R Z E I C H N I S . . . . . . . . . . . . . . . . . . . . . . . . . 112
ALUMINIUM · 1-2/2008
CONTENTS
EDITORIAL
The aluminium industry in the wake of globalisation .................... 3
NEWS IN BRIEF
People, companies, markets . . . . . . . . . . . . . . . . . . . ............................... 7
ECONOMICS
Which globalisation for the aluminium industry? – Part I .............
Marubeni predicts aluminium surplus in 2008 ...........................
Rio’s outlook for metals and minerals . . . . . . . . .............................
China sets guidelines for domestic aluminium and alumina projects
ECCA: production of strip-coated aluminium gains new momentum
16
23
23
24
25
66
S P E C I A L 2 0 0 8 : T H E I N T E R N AT I O N A L
A L U M I N I U M S M E LT I N G I N D U S T R Y
Primary aluminium activities at the turn of the year 2007/08 ........
Self-lifting crane modernizes older potlines . .............................
Hydraulic pressing of prebaked anodes for aluminium smelters ......
Zero fuel baking – the total heat recovery concept ....................
Best available technology for the fume treatment of anode
production plants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .............................
New generation of FLSmidth Möller direct pot feeding system ......
Metal treatment update . . . . . . . . . . . . . . . . . . . . . . . . .............................
Auto control system for quality casting . . . . . . .............................
History of intensive mixing for anode paste used in
aluminium electrolysis . . . . . . . . . . . . . . . . . . . . . . . . . . . .............................
30
39
40
44
48
54
56
61
This issue contains
an enclosure from
64
Reed Exhibitions
Deutschland GmbH
M A R K E TS A N D T E CH N O LO GY
Ebner Industrieofenbau: Demanding heat treatment applications /
Interview with Ebner management board .................................... 66
Siemens supplies new aluminium foil finishing mill .................... 73
Aluminium for building and construction in China ...................... 74
European Aluminium Renovation Award 2007 .......................... 77
Inserenten
dieser Ausgabe
E N V I R O N M E N T A N D E CO LO GY
Articles in German, see index of contents on the left
Nobel Peace Prize for IPCC: a small slice of glory also for
Halvor Kvande .......................................................................... 79
C O M PA N Y N E W S W O R L D W I D E
Aluminium smelting industry . . . . . . . . . . . . . . . . . . .............................
Bauxite and alumina activities . . . . . . . . . . . . . . . . . .............................
Recycling and secondary smelting . . . . . . . . . . . . .............................
Aluminium semis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .............................
Suppliers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .............................
83
85
86
88
91
RESEARCH
Articles in German, see index of contents on the left
Multi-temperature measurement of thermoelectric power for
character isation of solute levels in multi-component industrial
aluminium alloys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................. 92
EVENTS
Review: Incal 2007 – 3 rd International Conference on Aluminium .. 102
Dates . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................ 103
D O C U M E N TAT I O N
New books . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................ 100
Literature service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................ 105
Imprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................ 129
Preview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................ 130
J O B A D V E R T I S E M E N T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
S O U R C E O F S U P P LY L I S T I N G . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
ALUMINIUM · 1-2/2008
to which we draw
your kind attention.
List of advertisers
ABB Switzerland Ltd., Schweiz
31
Alcutec Engineering GmbH
37
Almeq Norway A.S., Norwegen
65
Böhler Edelstahl GmbH & Co. KG, Österreich 47
Buss ChemTech AG, Schweiz
55
Coiltec Maschinenvertriebs GmbH
75
Drache Umwelttechnik GmbH
33
Edimet S.p.A., Italien
11
El-Net Consulting AG – Stellenangebot
89
Gesamtverband der Aluminiumindustrie e.V. 23
Glama Maschinenbau GmbH
13
Haarmann Holding GmbH
69
Hertwich Engineering GmbH, Österreich
2
High Performance Industrie-Technik GmbH,
Österreich
57
Innovatherm Prof. Dr. Leisenberg
GmbH & Co. KG
53
Inotherm Industrieofen- und
Wärmetechnik GmbH
22, 82
Lucky-Winsun Enterprise Co., Ltd., Taiwan
63
Maschinenfabrik Gustav Eirich
GmbH & Co. KG
43
O.M.S. Impianti Srl, Italien
49
Padelttherm GmbH
67
Reed Exhibitions Deutschland GmbH
21
Reed Exhibitions India
29
Seco/Warwick S.A., Polen
59
Shanghai Jieru Heavy Industry
Equipment Co. Ltd., China
35
SMS Demag AG
132
5
AKTUELLES
Hamburger Trimet-Hütte
wieder unter Vollauslastung
Anfang Januar dieses Jahres konnte
Günter Kirchner, Geschäftsführer und
Vorstandsmitglied des Verbandes der
Aluminiumrecycling-Industrie e.V.
(VAR), Düsseldorf, auf eine 25-jährige
Tätigkeit für den Verband blicken.
Der gelernte Jurist und Rechtsanwalt
wechselte 1983 zur damaligen Vereinigung der deutschen Schmelzhütten
(VDS), nachdem er zuvor drei Jahre als
Geschäftsführer des Vereins deutscher
Metallhändler (VDM) sein “Handwerk“
in der Welt der NE-Metalle erlernt
hatte. Seit 24 Jahren ist Kirchner
außerdem als Generalsekretär in der
Organisation of European Aluminium
Refiners and Remelters (OEA) tätig.
Die Redaktion ALUMINIUM gratuliert.
Foto: Scheben
Günter Kirchner
feiert VAR-Jubiläum
Seit Ende 2007 wieder mit voller Kapazität
unterwegs – die Trimet-Hütte in Hamburg
Schneller als angekündigt arbeitet
die Hamburger Aluminiumhütte der
Trimet Aluminium AG wieder unter
Volllast. Am 14. Dezember 2007 wurde der letzte der 270 Elektrolyseöfen
in Betrieb genommen. Damit hat das
Werk seine ursprüngliche Kapazität
von 130.000 Tonnen Primäraluminium im Jahr erreicht. Die Produktion
der ersten Öfen war am 9. Mai 2007
feierlich gestartet worden.
Am 1. Dezember 2006 hatte die Trimet das stillgelegte Werk von Hydro
übernommen. Im Jahresverlauf wurden 250 Mitarbeiter eingestellt. 2008
will Trimet am Hamburger Standort
25 Mio. Euro in die Modernisierung
der Anodenfabrik investieren. Dort
wird ein neuer Brennofen mit größerer Kapazität in Betrieb gehen, der
die Versorgung der Hütte mit Anoden
sicherstellen wird. Auch der Standort
Essen, wo Trimet eine weitere Aluminiumhütte betreibt, wird dann von
Hamburg aus beliefert werden.
EU plant Emissionshandelspflicht für NE-Metallindustrie
Die EU-Kommission beabsichtigt, das
europäische Emissionshandelssystem
(ETS) auf andere Treibhausgase neben CO2 auszudehnen und zusätzliche Industriebranchen in den Emissionshandel aufzunehmen. Dazu zählt
auch die Erzeugung und Bearbeitung
von NE-Metallen. So sollen die Produktion von Aluminium (primär und
sekundär) und die Erzeugung und
Bearbeitung von NE-Metallen einschließlich Gießereien ab 2013 der
Emissionshandelspflicht unterliegen.
Konkret werden voraussichtlich nur
Anlagen von mindestens 20 MW
thermischer Leistung betroffen sein.
Bei Anlagen der Aluminiumindustrie
sollen zusätzlich zum Kohlendioxid
die perfluorierten Kohlenstoffe (PFC)
handelspflichtig werden.
Mit der Integration in den Emissionshandel wäre für die deutsche
Aluminiumindustrie eine zusätzliche
Kostenbelastung verbunden, die im
internationalen Wettbewerb nicht
auf die Kunden überwälzt werden
kann. Die EU-Kommission sieht die
Integration der NE-Metalle in den
Emissionshandel als einen Lösungsweg, um einen Ausgleich für den
Strompreiseffekt des Emissionshan-
6
dels zu schaffen. Dazu müssten jedoch stromintensive Prozesse wie die
Erzeugung von Primäraluminium ein
Vielfaches ihrer direkten CO2-Emissionen kostenlos zugeteilt bekommen,
um einen vollständigen Ausgleich für
die Einpreisung der CO2-Zertifikate
in den Strompreis zu erreichen.
Zu Jahresbeginn hat die EU-Kommission bei der Kompensation des
Strompreiseffektes einen Rückzieher
gemacht. Der betreffende Passus über
die kostenlose Überzuteilung von
Zertifikaten an stromintensive Branchen, die im internationalen Wettbewerb stehen, wurde aus dem Entwurf
der Emissionshandelsrichtlinie gestrichen. Auch die Idee, mittels einer
Besteuerung an der EU-Außengrenze
den Produktionskostennachteil innerhalb der EU für Aluminium und
andere energieintensive Produkte
auszugleichen, hat die EU unter Vorbehalt gestellt. So ist vor dem Start
der dritten Phase des Emissionshandels eine Prüfung vorgesehen, ob ein
erhebliches Risiko der Abwanderung
von energieintensiven Branchen infolge der Kostensteigerungen des
Emissionshandels zu erwarten ist.
Für die Planungs- und Investitions-
sicherheit der gesamten NE-Metallindustrie ist es unabdingbar, bereits
heute die Wettbewerbsfähigkeit durch
geeignete Maßnahmen zu sichern
und diese in der Emissionshandelsrichtlinie zu verankern. Gemeinsam
mit Eurometaux, dem europäischen
Dachverband der NE-Metallindustrie,
fordert die WVM zu allererst eine
wirksame Kompensation des Strompreiseffektes. Dies könnte durch drei
Optionen geschehen:
• die kostenlose Zuteilung von Zertifikaten direkt an energieintensive
Unternehmen
• die kostenlose Weitergabe der
Zertifikate an energieintensive Unternehmen im Rahmen von Langfristverträgen mit der Energiewirtschaft
• die Rückvergütung von Auktionserlösen an energieintensive Unternehmen.
Ende Januar 2008 (Anm.: nach Redaktionsschluss) legt die EU-Kommission ihren Vorschlag zur Fortsetzung
des Emissionshandels ab 2013 vor. Wie
bereits im Vorfeld wird sich die WVM
gemeinsam mit den europäischen
Verbänden in Brüssel und Berlin für
eine Kompensation des Strompreiseffektes einsetzen. Michael Niese, WVM
ALUMINIUM · 1-2/2008
NEWS IN BRIEF
Alcoa sells packaging and
consumer businesses to New-Zealand’s Rank Group
• Reynolds Food Packaging, a business for products, services and
solutions that improve performance in the catering, deli, bakery,
vending and produce industries.
Photo: Alcoa
Alcoa has agreed to sell its packaging
and consumer businesses for US$2.7
billion in cash to New Zealand’s Rank
Group Ltd. The transaction is expected to be completed by the end of the
first quarter 2008. The sale includes:
• Closure Systems International, a
global manufacturer of plastic and
aluminium packaging closures and
capping equipment for beverage,
food and personal care customers;
• Consumer Products, a leading
manufacturer of Reynolds Wrap
branded and private label foil,
wraps and bags;
• Flexible Packaging, a manufacturer of laminated, printed, and
extruded non-rigid packaging
materials such as pouch, blister
packaging and foil lidding for the
pharmaceutical, food and beverage markets;
tries around the world and generated
US$3.2 billion in revenues and US$95
million in after-tax operating income
in 2006, representing approximately
ten percent of the company’s revenues and three percent
of its after-tax operating
income.
Alcoa will continue to
operate its flat-rolled can
sheet products serving
the packaging market.
Rank Group is a New
Zealand-based privately
owned company with
a significant packaging presence, including:
Carter Holt Harvey, SIG
Holding,
and Evergreen
Reynolds Wrap – soon belonging to Rank Group
Packaging. Rank Group
has worldwide operations and emThese packaging businesses have
ploys approximately 17,000 people.
some 10,000 employees in 22 coun-
With buy-out of Alcan by Rio Tinto, is Kitimat smelter dead?
Questions are being raised about Rio
Tinto Alcan and its ability to construct
a new smelter in Kitimat given the
huge debt Rio Tinto has amassed in
the Alcan buy-out. After all, Rio Tinto
has paid a 33% premium for the Alcan shares in the US$38.1bn takeover. Tom Albanese, who was formerly
Alcan’s chief but then moved to Rio
Tinto, finds himself with a debt load
of about US$47bn. Rio Tinto will sell
some Alcan divisions to yield about
US$8bn, leaving a debt of US$39bn
which still will eat up a staggering
US$2bn a year in interest alone. Industry experts say that in order for
the deal to work, long term aluminium
prices need to be about US$2,770 a
tonne. However, the current spot price
is about US$2,530 per tonne, and analysts point out that the long term price
will be around US$1,870 per tonne.
That is, of course, unless Rio Tinto is
able to freeze up the supply and drive
up the price of the product; but that
does not seem likely.
Now, what effect will this latest
move have on the dark clouds that
ALUMINIUM · 1-2/2008
have hung around Kitimat for years?
If Rio Tinto wants to snare some big
money, it could sell its power producing facilities to another source. That
would free up needed cash. The company could (in order to get the cash
flow going) simply shut down the
Kitimat smelter as a way to reduce
the source of product and simply sell
power to the BC Hydro grid that hands
them a tidy cash flow. They could also
go ahead with the new smelter, but
that requires investing US$2b and the
question is, where does the money
come from?
Realisation of the Kitimat smelter
is becoming less and less likely as Rio
Tinto takes control of Alcan and looks
to see from where it can milk some
much needed cash.
paw
Based on Aluminum Association surveys, U.S. primary aluminium production totalled
2.56 million tonnes in 2007, an increase of 12.2 percent over the 2006 total of 2.28 million
tonnes.
7
AKTUELLES
FORMWERK aktuell
Evonik verkauft Rütgers Chemicals
Mit neuem Konzept
und Chefredakteur
Die Evonik Industries AG verkauft
ihre Tochtergesellschaft Rütgers Chemicals an den Finanzinvestor Triton.
Mit dem Abschluss der Transaktion
wird im 1. Quartal 2008 gerechnet.
Rütgers Chemicals, ein international tätiges Unternehmen der Basischemie, ist Europas führender Hersteller von Erzeugnissen der Teerchemie sowie globaler Rohstofflieferant
der Aluminium- und Stahlindustrie.
2006 erzielte das Unternehmen einen
Umsatz von 650 Mio. Euro, das operative Ergebnis lag bei rund 60 Mio.
Euro. Für 2007 wird ein Umsatz von
rund 700 Mio. Euro erwartet.
Rütgers beschäftigt derzeit weltweit 950 Mitarbeiter und produziert
in Europa sowie Nordamerika an acht
Chemiestandorten. Am Firmensitz in
Castrop-Rauxel wird die weltweit
größte Raffination von Steinkohlen-
Wolfgang Bahle (48) hat zum 1. Januar
2008 die Chefredaktion der im Giesel
Verlag erscheinenden Fachzeitung
FORMWERK aktuell übernommen. Bahle
kommt vom Carl Hanser Verlag, München, wo er seit 2003 die Redaktion des
Magazins Form + Werkzeug leitete. „Mit
Wolfgang Bahle haben wir einen anerkannten Fachjournalisten gewonnen, der
sich in der Branche bestens auskennt und
über mehr als zwei Jahrzehnte Erfahrung
als Macher von Fachmedien verfügt“,
betont Dietrich Taubert, Herausgeber von
FORMWERK aktuell. Bahle wird die Fachzeitung mit eigenem Redaktionsbüro von
München aus betreuen.
Nach der Übernahme hat der Giesel
Verlag den Titel komplett umstrukturiert. Mit der Berufung Bahles zum
Chefredakteur ist diese Phase nun abgeschlossen. „Aus vielen Magazinen haben
wir eine aktuelle Fachzeitung für den
Formen- und Werkzeugbau gemacht, die
das Fachzeitschriften-Portfolio unseres
Hauses ideal ergänzt“, erläutert Taubert
das neue Konzept.
Der Giesel Verlag verfügt als Herausgeber renommierter Branchentitel wie
der K-Zeitung, Automotive Materials und
Aluminium Praxis etc. über ein Industrienetzwerk und Branchen-Knowhow, das
für den Auf- und Ausbau von FORMWERK aktuell beste Voraussetzungen
bietet. Im Zeitungsformat (A3) stellt
sich das Fachblatt nach dem Relaunch
nicht nur optisch im neuen Gewand dar,
sondern wird auch inhaltlich mit einem
noch breiter gefächerten Themenangebot aufwarten. Im Vordergrund stehen
Nachrichten und Fachberichte aus der
Welt des Formen- und Werkzeugbaus:
von der Produktentwicklung über den
Werkzeug- und Formenbau bis hin zum
Serienbeginn.
Für 2008 sind sechs Ausgaben mit
einer Auflage von jeweils 12.000 Exemplaren geplant. Die erste Ausgabe startet
im März. Zu den Abonnenten von FORMWERK aktuell gehören Entscheider aus
dem Form- und Werkzeugbau sowie
aus den Branchen Kunststoff, Stahl,
NE-Metalle, Automotive, Medical und
Composite.
8
teer betrieben, weitere Anlagen stehen in Belgien und Kanada. Im Geschäftsfeld Aromatics werden unter
anderem Peche für die Aluminiumund Stahlindustrie produziert. Wachstumschancen sieht das Unternehmen
in Asien, Brasilien und Russland.
Triton ist eine unabhängige Private Equity Gesellschaft, deren Investmentstrategie auf Unternehmen in
deutschsprachigen und nordischen
Ländern Europas zielt. Die Gesellschaft operiert von Standorten in
Frankfurt, Stockholm und London
aus und verwaltet Fonds mit einem
Volumen von 1,7 Mrd. Euro.
Über den Kaufpreis wurde Stillschweigen vereinbart. Der Verkauf
steht unter dem Vorbehalt der Zustimmung durch die zuständigen
Kartellbehörden.
Energieoptimierung durch effiziente
Wärmeübertragung im Glühprozess
Das Drahtwerk Elisental W. Erdmann
GmbH & Co., Neuenrade, plant die Errichtung einer innovativen Abkühl-/
Aufwärmstation, um seinen Energieeinsatz zu optimieren. Das Unternehmen hat sich auf die Herstellung
von Drähten aus Aluminium- und
Magnesiumlegierungen spezialisiert.
Die Drähte müssen einen Glühprozess durchlaufen, um die beim Ziehprozess entstandene Kaltverfestigung
rückgängig zu machen und dadurch
die Umformbarkeit wieder herzustellen.
Ziel des vom Bundesumweltministerium (BMU) geförderten Vorhabens
ist es, die Abwärme der Drahtcoils für
die Vorwärmung der kalten Coils vor
dem Glühvorgang zu nutzen. Dadurch
kann einerseits Heizenergie eingespart und zugleich die Ofenkapazität
erhöht werden, da der Abkühlvorgang bisher zumeist in der Ofenkammer stattfand. So soll der Prozess
des Abkühlens aus den Kammeröfen
ausgelagert und zusammen mit dem
Prozess des Vorwärmens in einer
neuartigen Anlage vereint werden.
Die geplante Aufwärm-/Abkühlsta-
tion für zunächst ein Glühofenpaar
besteht aus einer Thermokammer,
in der ein Ventilator für eine starke
Luftumwälzung und damit gleichmäßige Verteilung der Wärme sorgt. Ein
vergleichbares Gebläse befindet sich
in den Glühöfen, das nun nicht mehr
benötigt wird.
Durch die geplante Aufwärm-/Abkühlstation kann Energie eingespart
werden. Die Temperatur eines geglühten Coils beträgt im Schnitt circa 500 °C, das entspricht bei einem
Coilgewicht von zwei Tonnen einem
Wärmeinhalt von ca. 860.000 kJ bzw.
239 kWh. Das Unternehmen schätzt,
dass mit der Kombistation ein kalter
Coil auf eine Temperatur von 150 °C
vorgewärmt werden kann. Der Wärmeinhalt wird damit auf rund 233.000 kJ
bzw. 64 kWh erhöht.
Bei erfolgreicher Umsetzung des
Vorhabens will das Unternehmen
auch die übrigen fünf Ofenpaare mit
diesen Stationen ausstatten. Damit
könnten im Werk insgesamt rund
220 Tonnen CO2 pro Jahr eingespart
werden. Das BMU fördert das Projekt
mit 42.000 Euro.
ALUMINIUM · 1-2/2008
NEWS IN BRIEF
European Aluminium Award 2008
An opportunity to be in the limelight
When the ‘Aluminium 2008’ trade fair
opens its gates on 23 September, the
international aluminium community
will attend an event that has over
the years developed to become the
number-one meeting place for the industry and its applications. More than
700 exhibitors from 40 countries will
present their innovations to 16,000
high-calibre trade visitors from about
100 countries.
The trade fair is a good opportunity to take part in the competition
for the European Aluminium Award
that recognises the highest standards
of excellence in innovations for the
aluminium industry and honours
companies for their outstanding
achievement. The Award competition
is once again being organised by the
Aluminium Centrum (Houten / The
Netherlands) in conjunction with the
European and the German aluminium
associations, EAA and GDA, as well
as the organiser of Aluminium 2008,
Reed Exhibitions.
The competition is a platform for
companies to demonstrate their innovative capability and offers winners a
boost in marketing and exposure. As
one of the 2006 winners, Mr. Cavezzan from Castaldi Illuminazione, said:
“Inquiries for the product started to
raise higher than ever before.” The
aims for the European Aluminium
Award 2008 are as follows:
• To present aluminium to a broad
public as an innovative, modern, sustainable and ecological material
• To honour companies that invest
money and energy in developing new
and outstanding products
• To present the aluminium industry
as responsible, with an interest in forward-looking development
• To highlight the capability of the
industry regarding new applications
• To add further value to the exhibition visitors and the exhibition’s special programme.
Designers, builders, manufacturers
as well as importers and constructors
may participate in the 2008 Award.
The following criteria will be taken
into account in the assessment of the
entries:
• Originality and functionality of
the use of the material: the degree to
‘Put up or shut up’ deadline for BHP Billiton
The Takeover Panel has imposed a deadline of 6 February 2008, by which BHP
Billiton has to either announce a firm
intention to make an offer for Rio Tinto
plc under Rule 2.5 of the UK Takeover
Code or state that it does not intend to
make an offer. If BHP refuses a formal
bid for Rio it will be bound by Rule 2.8
restrictions for six months from the date
of its announcement.
Rio Tinto welcomed this ‘put up or
shut up’ deadline. The Board unanimously rejected BHP’s three-for-one share
offer submitted early in November. “By 6
February, BHP Billiton will have had three
months to make a decision. Rio Tinto
believes it is in the interests of the Group
and its shareholders that this period of
uncertainty is brought to an end”, the
company announced. Rio Chairman Paul
ALUMINIUM · 1-2/2008
Skinner added: “Rio Tinto‘s very strong
existing portfolio will create significant
future value for shareholders. We have
been very clear as to where we stand and
feel it is time for BHP to do likewise.”
To fend off BHP’s advances Rio announced at the end of November that
it will increase its 2007 dividend by 30
percent and raise its divestment target by
50 percent to US$15bn. Furthermore, the
prospect of “an exceptional growth strategy in iron ore and a strong pricing outlook, with a conceptual pathway to treble
production to over 600 million tonnes per
annum” (company report) is another cornerstone to retain independence.
Latest news close to editorial deadline: English papers headline that ‘BHP
prepares to go hostile in Rio bid battle’
(Sunday Telegraph).
which the metal aluminium is used in
an original and useful manner
• Functionality of the product: the
degree to which the part meets both
its primary user function and its technological function, as a result of the
use of materials, construction and any
ergonomical adjustments
• Design: the degree to which the design as a whole achieves a harmonic
unity or a solution – by the construction of the design and the details of
the shape, all this in relation to the
material used
• Durability: in relation to life cycle
costs
• Recycling: the possibility of recycling the applied materials and the
raw materials used
• Representativeness and promotional value for aluminium
• The designs must have been taken
into production
• Products or projects must be entered on one‘s own initiative.
Further information about the European Aluminium Award 2008 and
details of how to enter are available
on www.aluminium-award.com.
Corus to sell its
smelters in Germany
and The Netherlands
Corus and Aluminium Industrial Acquisition Company Ltd (AIAC) have
signed a non-binding letter of intent
for the proposed acquisition of Corus’
aluminium smelters by an affiliate of
AIAC for an undisclosed sum. Internal consultation and advice processes
related to the transaction have begun.
A sale and purchase agreement would
only be entered into once these processes are completed. The proposed
transaction may be subject to certain
external regulatory clearances. The
two smelters are based at Delfzijl in
the Netherlands and at Voerde in Germany and produce over 200,000 tpy of
primary aluminium. The smelters employ 481 people in Germany and 475
people in the Netherlands.
paw
9
AKTUELLES
Ernüchterung im Fenstermarkt
daten massiv ein. Doch auch die
vorwiegend energetische Modernisierung und Renovierung von Wohngebäuden konnte sich wider Erwarten dem Abwärtssog nicht entziehen.
Diese beiden Negativeffekte konnten
auch durch die Nachfragebelebung
im Nicht-Wohnbau nicht ausgegli-
Foto: www.alufenster.at
Der deutsche Fenstermarkt ist 2007
kräftig eingebrochen: Der Absatz sank
um 7,8 Prozent; das Marktvolumen
beläuft sich nun auf 11,7 Mio. Fenstereinheiten (1 FE = 1,69 m²). Einen
derart massiven Nachfrageeinbruch
hatte die Branche nach dem fulminanten Wachstum 2006 (+ 9,6%) nicht
erwartet. Der Außentürenmarkt ging
um 4,5 Prozent auf 1,1 Mio. Einheiten
(2006: + 5,4%) zurück. Gemessen am
Absatz ist der Umsatz bei Fenster
und Türen aufgrund der steigenden
Werthaltigkeit etwas weniger drastisch ausgefallen. Soweit die Ergebnisse einer aktuelle Studie, die von
Branchenverbänden gemeinsam mit
dem Marktforschungsinstitut Heinze
erarbeitet wurden. Für 2008 wird sowohl im Fenster- als auch im Außentürenmarkt wieder eine moderate
Belebung erwartet.
Zum Jahreswechsel gab speziell
der Wohnungsbau ein düsteres Bild
ab. Wie befürchtet brachen aufgrund
des Wegfalls der Eigenheimzulage
und der Mehrwertsteuererhöhung
Anfang 2007 die Baufertigstellungs-
Aluminium-Rahmenmaterial konnte sich
2007 dem Absatzeinbruch bei Fenstern
und Türen entziehen
chen werden, so dass 2007 der Fenstermarkt in den Sog der negativen
Bauinvestitionsentwicklung geriet.
„Diese Marktentwicklung ist umso
unerwarteter, als die in der breiten Öffentlichkeit geführte Diskussion über
Energieeinsparung und Klimaschutz
sowie die exorbitant steigenden
Energie- und Strompreise eine deutliche Nachfragebelebung nach energieeffizienten Fenstern hätten erwarten lassen“, kommentierte Ulrich
Tschorn, Geschäftsführer des Verbandes der Fenster- und Fassadenhersteller in Frankfurt die Marktlage.
Der erfreuliche Anstieg im Industriebau, bei Büroimmobilien, Lagergebäuden und Hotels brachte eine
Verschiebung der Rahmenmaterialanteile zugunsten von Aluminium
(+5,0%).
Für 2008 erwartet die Branche ein
bescheidenes Wachstum von 1,1 Prozent auf 11,8 Mio. Fenstereinheiten.
Für den Außentürenmarkt wird ein
kleiner Zuwachs von 0,4 Prozent prognostiziert. Die Zuversicht auf eine
leichte Belebung des Marktes stützt
sich auf die steigende Nachfrage im
Bereich der energetischen Gebäudemodernisierung im privaten und vor
allem im öffentlichen Immobilienbestand.
Deutschland 2007
Sinkender Energieverbrauch trotz Wirtschaftswachstum
Der Energieverbrauch ist 2007 in
Deutschland mit 13.842 Petajoule auf
das niedrigste Niveau seit der Wiedervereinigung abgesunken. Gegenüber
10
2006 beträgt der Rückgang 5,0 Prozent, gegenüber 1990 7,1 Prozent, so
die aktuellen Zahlen der Arbeitsgemeinschaft Energiebilanzen.
Bei einem Anstieg der Wirtschaftsleistung um 2,4 Prozent gegenüber dem
Vorjahr hat sich der spezifische Primärenergieverbrauch 2007 unbereinigt (ohne Witterungseffekte) um 7,5
Prozent und bereinigt um rund sechs
Prozent verbessert. Der spezifische
Energieverbrauch (unbereinigt) hat
sich seit 1990 damit um rund zwei
Prozent pro Jahr verringert.
Mit dem rückläufigen Energieverbrauch sind auch die energiebedingten CO2-Emissionen deutlich gesunken. Nach ersten Abschätzungen des
Bundesministeriums für Wirtschaft
sind sie 2007 gegenüber dem Vorjahr
um 3,6 Prozent gesunken; gegenüber
1990 beträgt der Rückgang 19,3 Prozent. Damit ist Deutschland auf gutem
Weg, seine Kyoto-Verpflichtung (Reduktion um 21 Prozent bis 2012) zu
erfüllen.
ALUMINIUM · 1-2/2008
NEWS IN BRIEF
Aluminium India 2008 makes impressive strides
Aluminium India 2008, the International Conference and Exhibition will
be held in Mumbai from 22 to 24 February in order to address the needs
of the Indian aluminium industry in
the context of global markets and new
technologies. The trade show has confirmed participation of about 70 exhibitors, which will display the latest
technology, trends and applications
from across the world. A formidable
international participation already
pegged at 60 percent leaves nothing
to imagine. Trade visitors to the show
can very well expect a world of aluminium on and can benefit in an atmosphere charged with productivity.
The show has the support of the
Ministries of Mines, Science and
Technology as well as the leading associations like Federation of Mineral
and Metal Industries, Cable and Conductors Manufacturer Association
promises to be the most comprehensive platform on aluminium in India.
A host of visitor viz CEO’s, directors,
ALUMINIUM · 1-2/2008
plant and process managers, entrepreneurs, consultants, senior bureaucrats, students amongst others are expected to visit and witness the future
unfold. The silver lining is the high
profile inauguration of the show by
the Minister of Mines accompanied
by the Secretary, Mines and other
senior government officials from various states. The cutting edge international conference Alcastek will see a
large number of foreign participants
and presentations on best practices
across the world. Mr. G. Kirchner,
Chairman of the Global Aluminium
Recycling Committee from Germany,
will speak on the ‘Current and Future
Perspectives of Global Recycling of
Aluminium’. Director of Vedanta Resources, Mr. S. K. Timotia will speak
on the related issue of ‘Current Energy
and Environmental Issues in Aluminium Industry ‘.
Aluminium India 2008 will host
the technical session which is being
divided in various segments to meet
the demands of the industry. The plenary session is going to discuss the
global trends by the leaders of the aluminium industry. Mr. P. Suri, President, Balco, India will be addressing
the plenary session ‘an overview of
the industry’; he has been associated
with the industry almost all his life.
The metal has varied uses in almost
every industry, from aircrafts to automobiles, from power cables to foils.
One reason is that aluminium can be
fashioned into countless shapes in a
variety of applications because of its
basic malleable qualities. Aluminium
is gaining ground in the transportation
industry because of its light weight
which translates into higher payloads
and lower fuel consumption. Indian
railways is increasing its consumption of aluminium in railway wagons.
The aerospace industry is another
large consumer of aluminium. The
automotive sector has also increased
use of the metal in various body and
engine parts.
11
WIRTSCHAFT
12
ALUMINIUM · 1-2/2008
WIRTSCHAFT
Produktionsdaten der deutschen Aluminiumindustrie
Primäraluminium
Sekundäraluminium
Walzprodukte > 0,2 mm
Press- & Ziehprodukte**
Produktion
(in 1.000 t)
+/in % *
Produktion
(in 1.000 t)
+/in % *
Produktion
(in 1.000 t)
+/in % *
Produktion
(in 1.000 t)
+/in % *
Nov
41,9
-17,9
73,0
11,8
163,9
8,7
52,1
10,2
Dez
42,8
-10,1
61,6
12,9
124,1
1,2
34,6
10,2
Jan 07
40,9
-4,5
70,7
8,1
147,8
-2,7
51,1
12,6
Feb
37,1
-4,1
71,1
9,2
154,7
-2,5
49,9
8,3
Mrz
41,5
-3,8
75,2
-4,7
177,1
-0,6
54,7
5,3
Apr
41,8
-1,4
67,0
7,1
158,1
6,0
47,3
10,5
Mai
46,4
7,0
71,4
5,0
166,5
-2,5
50,8
2,2
Jun
46,5
7,8
73,6
12,0
164,8
0,7
51,7
8,1
Jul
48,7
8,1
72,5
13,2
167,1
1,5
53,3
9,8
Aug
49,0
8,5
63,5
6,7
164,8
-1,1
51,5
7,2
Sep
47,0
9,8
69,7
4,1
156,7
-2,3
50,2
-1,8
Okt
50,2
13,8
74,1
14,1
170,7
0,4
55,4
6,0
Nov
49,7
18,5
73,0
0,0
155,8
-4,9
53,7
3,1
* gegenüber dem Vorjahresmonat, ** Stangen, Profile, Rohre; Mitteilung des Gesamtverbandes der Aluminiumindustrie (GDA), Düsseldorf
Primäraluminium
Walzprodukte > 0,2 mm
14
Sekundäraluminium
Press- und Ziehprodukte
ALUMINIUM · 1-2/2008
ECONOMICS
A normative analysis exploring alternative business models
Which globalisation for
the aluminium industry? – Part I
B. G. Rüttimann, Singen
Hardly a day passes without news or
rumours about friendly or hostile takeovers or mergers in the aluminium
and other industries. In the attempt to
maximizing profits under the umbrella
of increased competition and limited
growth in advanced countries on the
one hand, but with a view to sustained
growth in emerging economic areas on
the other hand, a new era of company
gigantism has made its appearance. To
secure access to raw material sources
for the supply of the fast-growing new
economies, combined with their highly competitive labour cost structure,
the BRIC (Brazil, Russia, India, China)
countries together with the leading
16
Western technologically advanced companies will establish
a new economic
world order.
In the aluminium
industry, the merger
of Alcan with Alusuisse and Pechiney
gave the initial impetus for the creation
of a new industrial
logic. The AlcoaKaiser merger followed. Similar aims,
but with a different focus, were the
intention
behind
the Hoogovens and Fig. 1: The Business Typology Matrix [4]
British Steel merger
patterns regarding this phenomenon.
which formed the Corus company.
Moreover, the word globalisation still
Norsk Hydro has grown with the
makes many employees feel uneasy,
VAW take-over and, in a second step,
since they fear becoming victims of
concentrated on aluminium activicompany mergers and loosing their
ties. Alcoa Extrusion and Sapa have
jobs. In what follows, we will discovformed the largest extrusion coner that globalisation is not always the
glomerate and Mittal took over Alsame thing and that strategies have to
can’s Novelis spin-off. And now, after
follow different schemes correspondthe Rusal, Sual and Glencore merger
ing to the intrinsic nature of each busiforming Russian UC Rusal aluminium
ness. This paper aims to outline some
giant, we have seen the Rio Tinto minstructured thinking that will help to
ing giant successfully bidding for the
understand the future industrial logic
aluminium giant Alcan [1,2]. Out of
of the changing aluminium industry.
the originally 12 integrated big aluminium concerns that existed in the
1980s, today it seems that not one of
Characteristics of
the Western concerns will survive
the aluminium business
[3].
The names and configurations of
To gain insight into the globalisacompanies are changing continuously
tion phenomenon, we have at first to
with the intention to form an ideal
understand the intrinsic nature of a
business constellation which will
business. A business system is mainly
gain competitive advantages within
composed of:
the global market challenge, consist• the transaction object, i. e. the
ent with the doctrine of maximizing
product or service
profits in each case. In this context
• the supply and demand structure,
the word ‘globalisation’ is used all
with the related transaction
the time and often applied as a catchscheme, and
word indifferently, without having
• the operating configuration of
perceived the subtle differences of
supply.
Illustrations: Rüttimann
The aluminium industry is at
present undergoing a fundamental
transformation. After the concentration of vertically integrated
aluminium concerns we are now
experiencing on the one hand the
formation of big aluminium mining groups and on the other hand
the creation of process-technology
specialised groups for the semifinished product sector. All this
has to be seen under a rationale
that aims to control raw material sources and to respond to
increased competition in search
of maximizing profits. Which are
the economic models governing
the ongoing logic of globalisation?
What will the present aluminium
industry system look like in the
future? Are the fully integrated
aluminium groups a run-out model? Do small and medium-sized
companies still have a chance to
survive? The following contribution analyses the different competitive systems within the valueaddition chain of the aluminium
industry in order to explore the
rationale of alternative business
models within the present globalisation phenomenon.
ALUMINIUM · 1-2/2008
ECONOMICS
The backward determinants themselves which influence product characteristics, market structure, and determine the business classification,
and finally the operating configuration, are:
• value of the product
• transport costs and related range
of distribution
• production factors in terms of
cost drivers
• demand profile and
• supply structure.
These main determinants characterise each business type within an
industrial system. Certain combinations of these determinants reveal
clear patterns for each business type.
The representation of product-characteristics (differentiated or not) on
one axis and market-structure (oligopolistic or fragmented) on another
axis within a matrix, leads finally to
the following landscape of basic business types [4]:
• commodities
• specialties
• standards
• convenience.
Fig. 1 presents a clear, systematic and
structured view with which to classify
businesses roughly into types. It goes
without saying that mixed types may
exist. The ‘commodity’ type of business (e. g. metal ore or wheat) comprises all kind of goods listed in efficient
marketplaces such as commodity exchanges, where world market prices
apply. The ‘specialty’ type of business
(e. g. electronics or automobiles) embraces those durables and consumables goods with a distinctive brand,
and are thus governed by an imperfect
competition. The ‘standards’ type of
business (e. g. cement or extrusions)
covers intermediate or semi-finished
products with a rather polypolistic
supply structure. The ‘convenience’
type of business (e. g. clothing, but also
hotels) embraces most of the products
we come across sold in retail stores
in a very fragmented market to reach
the end user, and from the supply side
represents an imperfect or monopolistic competition.
Let us now try to fit the aluminium
technologies into this matrix. Bauxite
mining is an ore extracting operation
often performed by big vertically in-
ALUMINIUM · 1-2/2008
Indeed, the customer asks primarily
tegrated aluminium companies or
three questions: “Can you manufacmultinational mining groups, and is
ture this product? When can you supcharacterised by a clear oligopolistic
ply it? How much will it cost?”, so exmarket structure. By definition the
trusion companies do not supply just
differentiation aspect of a commodity
a product, but also perform a service
does not exist, except perhaps in relaby putting their production capacities
tion to ore content. The same applies
to the service of their customers and
to calcined alumina. The outcome of
trying to achieve the shortest delivery
the smelting process is primary alutime, accurate punctuality and speciminium, traded as ingots on commodfication-conforming quality [5]. In the
ity exchanges mainly as the 99,7%
aluminium industry we can sometimes
grade. For primary aluminium too we
also observe downstream integration
have the same oligopolistic structure
in the value-addition chain, such as
composed of MNEs (Multi-National
ready-to-fit components or systems
Enterprises) with some independent
for the building industry. These prodSMEs (Small Medium Enterprises) as
ucts have already a quite advanced
exceptions. We can classify all these
differentiation degree regarding the
goods as belonging to the commodity
solution proposed. On the other hand
type of business, goods flowing from
the degree of concentration from the
their natural origin to the big conversupply point of view may vary. Neversion centres. The world of semi-fabtheless, we can classify such sectors as
ricated products is mainly composed
belonging in-between the specialties
of the technologies rolling, extrusion,
type of business.
castings, forgings, and thin-foil rolling. Although often
these plants belong
to MNEs, the operating configuration
has a more fragmented structure
imposed by the desire for proximity
to the customers;
MNEs try to serve
a wider geographical area by setting
up a network of
plants. The reasons
for fragmentation
originate from the
cumbersome shape
of the products but
also the need to interact with custom- Fig. 2: Aluminium technologies within the Business Typology Matrix
ers, so resulting in a
more regionally orientated business.
From Fig. 2 we can see that the prodThe fragmentation of the business
ucts (or technologies) of the aluminfavours the concomitance of SMEs
ium industry rather belong to the
mainly in the sectors of extrusion,
commodities and standards type of
casting and forging. For example, in
business; this seems to be reasonable
the case of extrusion SMEs make up
due to the fact that the transaction
50% of the plants [3].
type is rather a B2B than a B2C.
All these technologies can be classified as belonging to the standards
The different perceivable
type of business. These are intermepatterns of globalisation
diate goods with a low degree of product differentiation. We can even clasGlobalisation is not always one and
sify the transaction object rather as a
the same thing [4]. This is also observice than just a physical product.
servable in the aluminium in- ©
17
ECONOMICS
Fig. 3: The Globalisation Type Matrix [4]
dustry. In fact, once having classified
the businesses, the question is how
globalisation is influenced by each
business type, or rather how globalisation of the business evolves in each
business type and according to which
pattern. Analysing the business types,
it emerges that the operating configuration determined by the business is
a major determinant for the globalisation type. The intrinsic logic reveals
two main types [4]:
• type 1: material (or physical)
globalisation for commodities
and specialties
• type 2: immaterial (or financial)
globalisation for the standards
and convenience.
The difference is substantial. Products of businesses following type 1
globalisation could ultimately be produced within a single plant operating
configuration and shipped physically
worldwide, whereas products of businesses following a type 2 globalisation
are produced locally for the local
market. MNEs will have in this case
a network of local companies by FDI
(Foreign Direct Investments) and the
business idea is to exploit the specific
know-how in doing business. In this
fragmented market they have to buy
18
or set up new enterprises to increase
market share. But for type 1 globalisation we have to distinguish between
commodities and specialties. Let us
call type 1a the ‘globalisation of commodities’; through the listing on efficient market places like commodity
exchanges, this represents the pure
example of a globalisation of business.
Nobody can escape from this type of
globalisation because its effects are
spreading all over the world. For type
1b ‘globalisation of specialties’ the
product characteristics are unique
and therefore – to some extent – the
price can be fixed by the supplier
taking into account the value for the
customer. This is due to the possibility of product differentiation within
the competitive system. For type 2
globalisation this distinction between
subtypes is not necessary. Indeed, according to Chamberlain markets not
involving material (physical) flows of
products over a certain distance represent a local monopoly. So there is
no need to differentiate globalisation
patterns between standard and convenience product types.
Are there any drivers able to upset
this apparently stable situation? Yes,
there is one. If the difference in price
for the same goods in different economies exceeds a certain threshold, exports can temporarily become possible
also for products following type 2 globalisation. We may call this ‘economic
arbitrage’. In these cases we can also
observe a material flow of products
within the type 2 globalisation characterised businesses; let us call this
type 1c globalisation ‘opportunistic
or low-cost globalisation’. Typical are
the exports of low-cost countries such
as China to the advanced economies.
But if a price difference also exists in
different economies for the salaries
of white-collar jobs – and the skills
are equivalent – then it is also possible that enterprise functions such
as R&D, call centres or accounting are
outsourced to low-cost countries like
India; let us call this type 3 globalisation the ‘globalisation of human factor
or service’.
Fig. 3 shows all the types of globalisation within a matrix which allows
a rough identification of the type of
globalisation and, from that, the possible evolution or competitive issues
to face within a certain business. It
Fig. 4: Type 1a or globalisation of commodities
ALUMINIUM · 1-2/2008
ECONOMICS
goes without saying that mixed types
may exist.
Moreover, these different globalisation types also follow different economic laws. Type 1a is characterised
by global price building at commodity
exchanges and mainly unidirectional
material flows from countries of origin to the countries of transformation
(Fig. 4). The preference for a raw material such as aluminium compared
to another such as steel depends on
the ‘latent value’ of a specific resource
compared to the substitute resource
[4]. This also takes into consideration
the ecological impact or the end-ofcycle aspects.
Globalisation type 1b is characterised by bi-directional flows of the
same products between different
economies (Fig. 5). The preference
for one product compared to another
depends on the ‘cost-benefit’ perception of the customer which can be
translated into the ‘competitiveness
factor’ for differentiated products of a
producer [4]. This goes far beyond the
Ricardian comparative cost advantage for heterogeneous but non-differentiated products. The higher the
competitiveness factor, the higher is
the market share of the producer. This
can be seen as the modern interpretation of the Heckscher-Ohlin factors
proportion theory.
The type 2 globalisation products
depend on the ‘intrinsic market fragmentation’ of the business [4]. This
market fragmentation is given by the
characteristic of the product and the
logistics and cost for it to be transported (Fig. 6). Indeed, combined with
the fragmentation of the final demand,
this is an indicator for the necessary
Fig. 5: Type 1b or globalisation of specialties
ALUMINIUM · 1-2/2008
polypolistic offer structure to reach
the next transformation stage of the
value-addition chain or to be distributed to the final customer. The types
1a, 1b, and 2 are the natural globalisation types.
Type 1c is based on the price differential of the same product between
two economies, which we may call the
‘propensity for globalisation’ [4]. The
higher this difference is, the higher are
the material flows of such products
although – from the intrinsic nature
of the business – this should result
in type 2 globalisation as is typically
the case for extrusions (Fig. 7). This
globalisation lasts as long as the price
difference exists, i. e. as long as the incentive is high enough. In particular,
extrusions in North America are being
confronted with the type 1c globalisation phenomenon from China [6].
Type 3 globalisation is modelled
by the ‘comparative skill of labour’,
i. e. the level of skills available and
the respective cost as well as the cost
of transferring the service considered
to a lower-cost economy (Fig. 8). This
globalisation type too will last as long
as the salary cost advantage persists.
The intrinsic logic and mathematical
models governing the triggering and
evolution of each globalisation type
are beyond the scope of this limited
discussion and can be consulted in
the appropriate literature [4].
Applying these findings to the
portfolio of different aluminium technologies shown in the matrix of Fig. 2
we can assert the following: the bauxite, alumina, and primary aluminium
businesses follow rather a material
type 1a globalisation pattern, i. e. the
growing demand in emerging coun-
tries will boost the flow of raw materials from the sources to these new
industrializing regions. The material
flows will grow not only in volume
terms; the interaction of the different
economies will also increase and the
centre of gravity will shift to these new
emerging economic regions. Rolling,
extrusions, castings, and forgings will
rather follow a financial type 2 globalisation pattern, with companies building up a network of similar operations
via FDI in accordance with a market
coverage strategy. Indeed, Sapa and
Hydro, but also Indalex limited to
the North American region, are typical examples of extrusion industries
that follow such a market coverage
strategy, exploiting their know-how
of manufacturing and to promote
their extrusion business. The spin-off
regarding the ex-Alcan rolling activities forming Novelis, as well as Aleris
from Corus, are also good examples
of how to create a technology-centred
business model focussed on the better
servicing of market needs. Despite the
fact that the casting and forging industries used to be dominated by familyowned, single plant companies, there
too a tentative creation of networks
can be observed. All these polypolistic businesses are characterized by an
increased level of M&A or the set-up
of new plants in emerging economic
regions. On the other hand, type 2
strategies can also be observed in type
1a characterized markets, such as the
merger of Rusal, Sual, and Glencore.
But here there exists a big difference
in the logic: whereas on the one hand
in markets primarily characterized by
type 2 globalisation the business itself
is fragmented and remains regional,
on the other hand when a secondary type 2 pattern overlies a type 1a
pattern, the markets remain characterized by material flow from the
countries of origin to the destination
countries all over the world. In fact,
the first case is a ‘conditio sine qua
non’ for growth in new geographic regions, while the second case provides
the option to growth further when
the present mines are reaching their
exploitation limits. The ongoing concentration process of the aluminium
primary industry is a typical example
[3]. Building applications such ©
19
ECONOMICS
Fig. 6: Type 2 or financial globalisation
as window and façade systems can be
considered to belong to the type 1b
globalisation pattern. Indeed, despite
the rather fragmented building industry, proprietary building systems from
suppliers such as Schuco and similar
ones are often sold worldwide as the
consequence of winning international
contracts. Further, in our industry we
also have examples of globalisation
type 1c. In fact, for some years exports of extrusions from China to the
United States have been increasing
rapidly and attained a market share
of an astonishing 9% at the end of
2007 [6]. The price differences between imported and locally produced
extrusions observed were up to 20%,
showing a high propensity for globalisation which made it possible to ship
standardized products even across
long distances. Despite that, due to its
fragmented characteristics the extrusion market follows naturally, if ever,
a type 2 strategy. This transient type
1c globalisation will last as long as the
price difference is large enough [4].
Generally, all these imperialistic
expansion strategies are often denounced by public opinion. But the
natural types of globalisation (i. e. 1a,
1b, 2) are not responsible for social
consequences such as unemployment; the socio-political consequences are mainly caused by the transient
types of globalisation (i. e. 1c and 3).
That, however, is another story. The
phenomenological modelling of economic globalisation presented here
is further accompanied by a common
denominator for the intrinsic reason
of macroeconomic globalisation evolution. This rationale behind it, which
20
is grounded on entropy-based inequality and derived risk metric, leads
to The Central Theorem of Globalisation an explanation of which would
be far beyond the scope of the present
paper [4].
The peculiarity of the aluminium
industry’s value-addition chain
The aluminium industry has been
mainly composed of fully vertically
integrated concerns covering bauxite
extraction, alumina refining, primary
aluminium smelting, various semis
production technologies, and sometimes going as far as the manufacture
of fully-finished components for the
automotive, aerospace or electrotechnical industries (Fig. 9). It is interesting to see the apparently neat division between the upstream operations
(bauxite, alumina and primary) and
the so-called downstream technologies (rolling, extrusion, casting, and
forging). Indeed, primary aluminium
production is a two-step cascaded
process supplying the common basic
raw material to all the other aluminium semis operations. The figure also
shows the relative business typology
and related globalisation type at each
level of the value-addition chain. Accordingly, we cannot simply say that
a general globalisation tendency can
be observed in the aluminium industry; it can also be asserted that it will
perform differently along the addedvalue chain in accordance with the
different logics, with different effects
on the competitive system as well as
the social system of employment.
Moreover, there are evident differences between the levels of the
value-addition chain. Although the
semis operations have the same globalisation type, we can assume that
between the different semis operations there are no relevant synergies
observable from a management point
of view (except in contingent situations), and of course the alloys used
are often quiet different, with separate
recycling loops, and the products from
different technologies are only partly,
if ever, substitutable and therefore
need different conceptual engineering design. The reason for backward
integration is more related to having
direct access to the aluminium metal,
i.e. to securing the supply side.
So are fully integrated aluminium
concerns a run-out model? This depends largely on the business model
adopted by the parent company and
will be a key issue in examining the
survival logic of today’s remaining aluminium companies. In general it can
be said that it is difficult to dominate
a business profitably beyond a certain well-defined range of the whole
value-addition chain. There are mar-
Fig. 7: Type 1c or opportunistic cost globalisation
ALUMINIUM · 1-2/2008
ECONOMICS
keting, technological and management reasons for this, going
back to the concept of economies of scale. Indeed, there is
no integrated company that fabricates a final product such
as a car, which is fully backward integrated. Specifically,
taking the example of the automotive industry, companies
concentrate on core activities such as engine development
(and manufacturing) and especially the whole assembly operation of the car. This represents a very tiny range of the
value-addition chain of automotive manufacturing. Indeed,
today the added value generated per hour is more important
than the added value generated per car, For brand marketing
reasons it is important to be able to sell more cars with the
same brand and increased prestige, as well as to increase the
buying power for the components [7].
An alternative to vertical integration could be to have a
horizontal expansion of the same technology, such as rolling
for Novelis and extrusions for Sapa, or at least similar ones
that offer synergies from the technological point of view or
for the same markets with different technologies in order
to offer alternative solutions, such as Corus with steel and
aluminium (which is no longer being pursued due to final
concentration on the steel business). This can take place at
every level of the value-addition chain, i. e. mining, or smelting, or rolling, or extrusion, or even casting (sand or diecasting, steel and aluminium). In general the following basic
question has to be answered: is the core business content to
sell products of a specific technology to all markets, or is the
core business content to serve a specific market with different technologies? The first model has more a capacity-filling
logic and the second one more a product-solution approach.
This distinction is more important than many people believe;
there is nothing worse than believing that one is selling a
product for a certain application market whereas in reality
the destination of the application market is irrelevant and
the transaction object is rather a service with the underlying business following a technological capacity-filling logic
irrelevant to the application. In fact, care must be taken not
to follow the often undifferentiated preaching of “you have
to become market-orientated” by generic consultants of the
past, which was often understood as application segmentation. It is necessary to understand the intrinsic logic of
each single business, to achieve not only undifferentiated
customer orientation but even very differentiated customer
dedication that fulfils their specific needs even inde- ©
INDUSTRIAL DESIGN
& ENGINEERING
IS YOUR
INNOVATION
THE WINNER
IN 2008?
ENTER NOW!
WWW.ALUMINIUM-AWARD.EU
ORGANISING PARTNERS
MAIN SPONSORS
MEDIA SPONSORS
WWW.ALUMINIUM-AWARD.EU
Fig. 8: Type 3 or globalisation of human factor
ALUMINIUM · 1-2/2008
21
ECONOMICS
production increases the nonsold ingot stock
and the LME ingot price will go
down because
supply exceeds
demand. On the
other hand, the
bauxite and alumina production
level, which can
be
controlled
to
some
extent,
Fig. 9: The value-addition chain of the aluminium industry
can be adapted
to demand. The bottleneck will most
pendently of the application [5]. The
probably be formed by the railway’s
semis industry is characterised by B2B
capacity to transport the bauxite.
and not B2C marketing. UnderstandFrom that point of view it makes sense
ing the intrinsic nature of the semis
to combine bauxite and alumina probusiness will be the key to success in
duction (including reflections about
future competition. Of course, certain
optimised sourcing of caustic soda)
technologies are more appropriate for
in order to reduce the transportation
MNEs than for SMEs due to capital
volume by half. It becomes evident
intensiveness. But everyone has the
that primary aluminium production
possibility to participate in the race
is a different business from mining
for global dominance. It is evident
although it belongs to the same glothat the possibility to build-up a type
balisation type. For that reason we can
2 globalisation strategy for a specific
assert that for the mining giant Rio
semis technology is very realistic, as
Tinto to go into the primary aluminthe logic and examples show.
ium business is already a downstream
These are the known facts – so
expansion into a new technology.
what next? Taking into consideration
Another interface exists between
these few thoughts, we can question
components manufacturing and the
the logical division marking the indifferent semis-operations. To interface between upstream and downcrease the supplied value-addition
stream with the transfer product becontent of semis-products, semising the ingot (or rolling slab as well as
plants try to perform additional meextrusion billet). The risk of remainchanical operations as a service to
ing short of metal supply is marginal
their customers or even become infor SMEs that carry out downstream
volved in component development
operations, considering their produc[7]. The question is how far this
tion capacities in relation to the total
should go. If the downstream activity
metal supply. For MNEs, long-term
comprises more than only finishing
contracts with primary producers can
operations but rather the fabrication
bypass the issue of not having one’s
of ready-to-fit parts (even combined
own metal production. This is valid
with engineering content), the busifor all operations where pricing is
ness content might be quite different
generally based on tolling or similar
from pure semis production, with a
margin calculations. Are there other
production philosophy of one-piece
interfaces? Yes, as also between aluflow in one case and batch producmina and primary metal. Indeed, the
tion in the other case. The decision
peculiarity of the electrolysis process
to go along that road has to be well
that yields liquid primary aluminium
evaluated.
is that it necessitates a continuous,
It becomes evident, that not only
uninterrupted process. The cells have
the globalisation pattern may be difto be constantly fed with alumina (and
ferent for each step of the value-addicurrent) in order to avoid sealing. The
tion chain, but also that the intrinsic
liquid metal output of a smelter is conissues are specific to each step. In the
stant and in case of low demand, the
22
next section we will see that also the
CSFs (Critical Success Factors) are
specific to each step of the value-addition chain.
To be continued in ALUMINIUM
3/2008
References
1) Rio Tinto to buy Alcan, ALUMINIUM
7-8/2007, Giesel Verlag.
2) Pawlek R., The Rio Tinto Alcan deal
– marking the dawn of a new era for metals, ALUMINIUM 9/2007, Giesel Verlag.
3) Conserva, M.: Global Market Trends
of Aluminium and Aluminium Products,
Proceedings of the 6th World Congress
ALUMINIUM 2000, Florence Italy, March
13-17, 2007, Interall publications.
4) Rüttimann, B.: Modelling Economic
Globalisation – A Post-Neoclassic View
on Foreign Trade and Competition, Verlagshaus Monsenstein und Vannerdat,
Edition MV-Wissenschaft, Münster, 2007;
ISBN 978-3-86582-447-9.
5) Rüttimann, B.: Strategy and tactics in
the aluminium semi-finished products industry, ALUMINIUM 78 (2002) 1/2 and 4.
6) Rüttimann, B.: The Globalisation Trap
of the Aluminum Extrusion Industry, Paper to be presented at the 9th International
Extrusion Technology Congress ET08,
May 13-16, 2008 Orlando FL USA.
7) Hagen, H.; Rüttimann, B.: The automotive market – the new challenge for the
aluminium industry, ALUMINIUM 80
(2004) 3 and 4.
Author
Dr.-Ing. Bruno G. Rüttimann, MBA, graduated from Milan Polytechnic and Bocconi
University of Economics in Milan. Since
2003 he has been in charge of continuous
improvement within Alcan Engineered
Products. As Master Black Belt he supports the introduction of the Lean Six Sigma culture to increase the competitiveness
of the plants.
()##!)#$*
!
&#$#
!"!#$ %
'''%!#$ %
ALUMINIUM · 1-2/2008
ECONOMICS
Marubeni predicts aluminium surplus in 2008
Japanese trading house Marubeni expects a global aluminium surplus of
543,000 tonnes in 2008 as new production comes on stream, but predicted a tightening in 2009 on increased
Chinese consumption. Global aluminium consumption will grow by 9.5% to
41.26m t in 2008 and a further 5.6% to
43.56m t in 2009. Production in 2008
is expected to grow 10% to 41.80m
t as new capacity comes on stream.
The surplus of supply over demand in
the CIS region may rise from 3.47m t in
2007 to 3.86m t in 2008 as output rises
by 10.6% to 5.01m t. The supply-anddemand balance in China, however,
is forecast to be perfectly matched in
2008 at around 15m t. However, an
8% increase in Chinese consumption
to 16.2m t in 2009 is likely to lead to
a 100,000 t shortfall in supply. Global consumption in 2009 is forecast
to reach 43.56m t, and production
43.77m t, leading to a global oversupply of around 210,000 t.
The trading house is also forecasting prices to continue their upward
trend, averaging between US$2,300
and US$3,000 per tonne in 2008, and
between US$2,500 and US$3,500 per
tonne in 2009.
paw
Rio’s outlook for metals and minerals
For aluminium Rio makes the
following forecast: Aluminium
consumption has grown the fastest of all non-ferrous metals over
the last five years and is forecast
to grow rapidly over the next 20
years: There has been enormous
recent growth in Chinese consumption and production, but
aluminium has benefited from
increasing use in many other regions including the OECD.
Constraints on China’s domestic
bauxite production suggest that the
country’s massive investment in primary aluminium will still relay largely
on imported bauxite. This, combined
with China’s high power costs, means
ALUMINIUM · 1-2/2008
that Chinese aluminium capacity will
continue to be high-cost in a global
comparison. Additionally, Chinese
production will eventually suffer
from a stronger currency as the RMB
edges toward fair exchange rate. The
implied increase in the marginal cost
of production for alumina and aluminium mean, that their prices are
unlikely to revert to the lower levels
implied by historical trends.
Spot aluminium prices have moderated by about 10% since the middle
of 2007 and are currently moving in
the range of US$2450-2550 per tonne,
which still covers production costs at
the highest cost smelters. Forward
prices have increased in relation to
spot prices reflecting a market expec-
tation that smelters with high marginal costs will still be needed to meet
demand over the medium term.
Aluminium is forecast to continue
to enjoy rapid growth over the next
two decades. CRU projects consumption to grow by more than 140% over
the period to 2030. One reason for the
recent growth is that China’s economic development is highly aluminium
intensive. But at the same time aluminium has gained worldwide in intensity of use and has partly replaced
other materials across a wide range of
applications.
The strong and sustained growth
in aluminium demand is starting to
stretch the resource base that has so
far allowed unlimited growth of ©
23
ECONOMICS
the aluminium industry: large-scale,
good-quality bauxite deposits and regions of relatively cheap energy.
In the case of bauxite the escalation in demand for aluminium is being met increasingly from high-cost
and small-scale bauxite deposits in
China, and by opportunistic mining
operations in Indonesia. Such sources of supply are unlikely to provide a
long-term solution for the industry’s
rapidly growing bauxite needs and
have already led to stronger prices
for traded ore. Bauxite supply therefore requires significant investment in
large scale mines if the industry is to
meet demand projections.
Meanwhile, high energy prices,
combined with a greater integration
between regional energy markets
through the development of LNG and
gas-to-liquids projects, could increase
the costs of power available to greenfield smelters around the world. Together with a likely trend towards the
introduction of pricing mechanisms
or tax regimes for carbon emissions,
sustainable isolated hydropower
sources have become more valuable.
This in turn may increase the value of
existing aluminium capacity linked to
such power sources.
In the context of growing demand
and constraining supply, the longterm price development for aluminium will much depend on the evolution of costs. Turning first to alumina,
refineries relying on imported bauxite
supplies, such as those in Europe and
the US Gulf coast, have traditionally
occupied the top-end of the alumina
cost curve. High energy prices and
rising delivered bauxite costs have
aggravated the competitive disadvantage of these refineries during the
past five years. The Chinese industry
is currently drawing on its capital cost
advantage to add significant non-integrated alumina capacity, but these
refineries are rapidly joining US and
European alumina refineries toward
the top of the cost curve. The resulting
increase in the marginal cost of production means that alumina prices are
unlikely to revert to the lower levels
implied by historical trends, even if
some higher cost integrated capacity
is eventually replaced by lower cost
production.
In the case of aluminium, as with
alumina, new Chinese smelters are
fundamentally changing the shape
of the industry cost curve. The rapid
increase in Chinese smelting capacity
since the start of this decade reflects
the relatively low entry barriers in
building smelters, due to China’s low
capital costs and short build times.
However, this new capacity has come
in at the top-end of the operating cost
curve, mainly reflecting relatively
high power costs. Consequently, the
industry aluminium cost curve has
shifted up since 2003 and become
steeper. This has provided a new significantly higher base for prices.
A key point to note is that the
gradual appreciation of the Chinese
currency should also translate into
higher US dollar production costs for
Chinese smelters – all other things
being equal. With Chinese smelters predominantly in the third and
fourth quartiles, the top end of the
curve would shift up in such a scenario creating an even higher basis for
aluminium prices and higher margins
for smelters elsewhere in the lower
cost quartiles.
R. P. Pawlek, Sierre
China sets guidelines
for domestic aluminium and alumina projects
In December 2007 China has announced guidelines for those who
wish to enter the domestic aluminium industry, according to the
National development and Reform
Commission.
All new development projects in the
aluminium sector, including mining,
alumina refining, ingot melting and
recycling as well as fabrication plants,
must abide by all requirements of the
various state departments. These include basic requirements for proper
land use, safety and environmental
regulations.
Under the guidelines, smelting
facilities cannot be built within one
kilometre of protected regions, such
as water preservation areas, protected
farming areas, protected natural reservations, famous scenic attractions,
24
major cities and their nearby surrounding countryside, as well as hospitals, food, medical and electronic
business.
New bauxite mining projects with
an investment of more than Yuan
500m (US$67.3m) will require approval from the investment management division of China’s State Council.
Those with a smaller investment will
require approval from the investment
management divisions of their respective provincial governments. All mining projects seeking approval must
have at least a 300,000 tpy capacity
and a minimum life span of 15 years.
All new alumina projects must be
approved by the investment management division of the State Council. Those using domestic bauxite as
feed must have an initial capacity of
at least 800,000 tpy, and a minimum
lifespan of 30 years; those using imported bauxite as feed must have an
initial capacity of at least 600,000 tpy,
and reliable feed supply such as longterm contracts for at least five years
of delivery.
New ingot smelting projects will
also require approval from the State
Council’s investment management
division. In the near term the Council
will consider only upgrading projects
to suit environmental requirements
and to replace outdated machinery.
These projects also require guaranteed alumina feed supply, sufficient
power supply, and efficient transport
conditions.
New secondary and recycling aluminium projects must have at least a
capacity of 50,000 tpy; existing plants
should have at last a capacity of 20,000
tpy, and expansion projects must have
ALUMINIUM · 1-2/2008
ECONOMICS
– sheet/strip must have at least 50,000
tpy, foil a minimum of 30,000 tpy and
extrusion of aluminium 50,000 tpy.
R. P. Pawlek, Sierre
at least a capacity of 30,000 tpy.
In the aluminium fabricating sector, new projects have to focus on
sheet, strip, foil and extrusion. Projects
with combined capacity must produce at least 100,000 tpy. Approval
for projects producing a single product will depend on the product type
ECCA
ECCA
Production of stripcoated aluminium
gains new momentum
Produktion von beschichtetem
Aluminiumband legt erneut zu
At its 41st Autumn Conference
held between 18 and 20 November 2007 in Brussels the European Coil Coating Association
(ECCA) reported sustained growth
in the production of strip-coated
aluminium.
Auf ihrer 41. Herbstkonferenz
vom 18. bis 20. November 2007 in
Brüssel berichtete die European
Coil Coating Association (ECCA)
über ein anhaltendes Produktionswachstums von bandbeschichtetem Aluminium.
Photos: Alcan Singen
Whereas the annual growth rates of
Während die jährlichen Zuwachsrastrip-coated steel have averaged ten
ten von bandbeschichtetem Stahl seit
percent over a number of years, since
vielen Jahren durchschnittlich zehn
2000 aluminium had been showing
Prozent betragen, war bei Aluminium
a downward tendency which was
seit 2000 eine rückläufige Tendenz zu
not reversed until 2006, with a rise
verzeichnen, die sich erst 2006 mit
of eight percent compared with the
einer Steigerung von acht Prozent
year before. Happily, the strip coater
gegenüber dem Vorjahr umkehrte.
members of the ECCA were able to
Erfreulich, dass die in der ECCA
announce a new production increase
zusammengeschlossenen
Bandbefor aluminium strip in the first half of
schichter für das erste Halbjahr 2007
2007, by as much as 22 percent comeinen erneuten Produktionsanstieg
pared with the same period a year
bei Aluminium melden konnten,
earlier. That growth can mainly be atund zwar um 22 Prozent gegenütributed to extensive deliveries for the building sector, in
which strip-coated aluminium is used for example to
produce wall, deck and roof
sections and for composite
panels, doors and gates.
The conference motto
was “European regulations:
threat or opportunities for
coil coating?” In that connection many lectures dealt with
the consequences of current
European legislation for both
strip coaters and the users of
strip-coated products. One
theme was the influence of
European legislation on the
building sector, which is
by far the largest individual
market for coated strip of Bandbeschichtete Alupaneele an der Überdachung des
both aluminium and steel. Eingangsbereichs Bahnhof Potsdam
Besides building regulations, Strip-coated aluminium for the roofing of the enthe European guidelines © trance area at the train station in Potsdam near Berlin
ALUMINIUM · 1-2/2008
ber dem Vergleichszeitraum 2006.
Dieses Wachstum ist in erster Linie
auf umfangreiche Lieferungen für
den Bausektor zurückzuführen, wo
bandbeschichtetes Aluminium z. B.
für Wand-, Decken- und Dachprofile
sowie für Verbundplatten, Türen und
Tore eingesetzt wird.
Die Konferenz stand unter dem
Motto
„European
regulations,
threat or opportunities for coil coating“. In diesem Zusammenhang wurde in mehreren Vorträgen aufgezeigt,
welche Konsequenzen sich aus der
aktuellen europäischen Gesetzgebung
sowohl für die Bandbeschichter als
auch für die Anwender bandbeschichteter Erzeugnisse ergeben. Ein Thema
war der Einfluss der Europäischen
Gesetzgebung auf den Bausektor, der
sowohl für beschichtete Aluminiumwie für Stahlbänder der mit Abstand
größte Einzelmarkt ist. Neben Regeln
für die Bauausführung sind vor allem
die europäischen Energie- und Emissionsschutzrichtlinien von Bedeutung.
Gerade hier ergeben sich vielfältige
Ansatzpunkte, die Vorteile von beschichteten Substraten als verkaufsfördernde Eigenschaften zu nutzen.
Ein weiteres Thema waren die
Auswirkungen der am 1. Juni 2007 in
Kraft getretenen neuen EU-Gesetzgebung für Chemikalien – REACH
– auf die weltweiten Lieferketten. Da
die meisten der wichtigen Bestimmungen am 1. Juni 2008 wirksam
werden, stellt sich für jeden Hersteller die Frage, wie er seine nachgelagerten Anwender unterstützen
kann. Das Leitprinzip von REACH
– „Ohne Daten kein Markt“ – bedeutet, dass alle europäischen Hersteller
chemischer Stoffe ihre Produkte nur
nach entsprechender Registrierung
weiterhin anbieten dürfen. ©
25
WIRTSCHAFT
Strenger werdende Auflagen für den
Umweltschutz stellen sowohl für die
Hersteller, als auch für die Betreiber
von Bandbeschichtungslinien eine
große Herausforderung im Hinblick
auf die Anpassung der traditionell
auf der Verwendung von Chromat
(Cr6+) beruhenden Vorbehandlung
und Neutralisierung dar. Die neuen
EU-Bestimmungen schränken die
Verwendung von Cr6+ für Automobil(EU-Richtlinie EoVL) sowie Elektround Elektronikanwendungen (EURichtlinie RoHS) stark ein.
Neben dem Einsatz des durchaus
umweltverträglichen
dreiwertigen
Chrom (Cr3+) begünstigte die Gesetzgebung die Entwicklung chromatfreier
Ersatzlösungen. Einige Beispiele wurden in Brüssel vorgestellt: Als Ersatz
für chromhaltige Korrosionsschutzmittel zur Grundierung von Aluminium- und Stahlbändern eignen sich
z. B. silikatische Pigmente mit Ionenaustausch. Bereits Mitte der 1980er
Jahre wurden Pigmente auf Basis von
Silikatprodukten mit Ionenaustausch
als ungiftige und umweltverträgliche
Alternative für die bislang bekannten
Rostschutz-Pigmenttechniken
auf
den Markt gebracht. Inzwischen
haben sich diese Produkte als eine
viel versprechende Ersatzlösung für
Chromate durchgesetzt und erlauben
es der Bandbeschichtungsindustrie,
Grundierungen entsprechend den
angekündigten neuen europäischen
Bestimmungen herzustellen.
Als ein weiteres Beispiel für eine
kostengünstige und qualitativ hochwertige Alternative zur chemischen
Reinigung von Bändern wurde der
Einsatz von „Openair“-Plasma vorgetragen. Im Gegensatz zu der bisher üblichen Wasser/Tensid-Reinigung der
Bänder vor dem Auftrag einer Korrosionsschutzschicht handelt es sich
hier um einen umweltfreundlichen
Trockenreinigungsprozess, der die
Energie von atmosphärischem Plasma nutzt. Damit können auch dünne
Schichten von Schmiermitteln aus
dem Walzprozess mit hoher Effizienz
entfernt werden.
Unter dem Motto „10 years into
future“ findet die nächste ECCAKonferenz vom 18. bis 21. Mai 2008
in Malaga, Spanien, statt.
B. Rieth, Meerbusch
26
on energy and emission protection
are of importance. It is precisely here
that there are many ways of using the
advantages of coated substrates as
sales-promoting properties.
Another theme was the effects on
the worldwide supply chain, of the
new EU legislation on chemicals,
REACH, that entered into force on 1
June 2007. Since most of the important provisions take effect from 1 June
2008, every manufacturer is faced by
the question of how best to support
his future users. The guiding principle
of REACH – ‘No market without data’
– signifies that all European manufacturers of chemicals may only continue
offering their products after appropriate registration.
Stricter environmental protection
impositions present a great challenge
for both manufacturers and operators of strip-coating lines as regards
protection media for the priming of
aluminium and steel strips, for example silicate pigments with ion exchange are suitable. As long ago as the
mid-1980s pigments based on silicate
products with ion exchange were already brought onto the market as new,
non-toxic and environmentally unobjectionable alternatives for the previously known rust protection pigment
techniques. Now, more than 20 years
later, these products have emerged as
a promising replacement solution for
chromates and are enabling the stripcoating industry to produce primers
that comply with the announced new
European provisions.
As a further example of an inexpensive and high-grade alternative
to the chemical cleaning of strips,
the use of ‘Openair’ plasma has been
proposed. In contrast to the previously usual water/surfactant cleaning
Aluminium Centrum, Houten, Niederlande, mit bandbeschichteter Fassade
Aluminium Centrum, Houten, The Netherlands, with strip-coated façade
the adaptation of traditional pretreatments that rely on chromate (Cr6+)
and its neutralisation. The new EU
provisions greatly restrict the use of
Cr6+ for automobile (EU-Guideline
EoVL) and electric and electronic applications (EU-Guideline RoHS).
Besides the use of the entirely
environmentally
unobjectionable
trivalent chromium (Cr3+), the legislation also encourages the development of chromium-free alternative
solutions. Some examples were proposed in Brussels: as a replacement
for chromium-containing corrosion
of strips before the application of a
corrosion protection layer, this is an
environmentally friendly, dry cleaning process which utilises the energy
of atmospheric plasma and enables
even thin lubricant films from the rolling process to be removed with high
efficiency.
The next ECCA Conference, run
under the motto “10 years into the future”, will take place between 18 and
21 May 2008 in Malaga, Spain.
B. Rieth, Meerbusch
ALUMINIUM · 1-2/2008
WIRTSCHAFT
Otto Rudolf Fuchs begeht 80. Geburtstag
tiger Systeme: u. a. für Fenster, Türen,
Fassaden, Wintergärten, Sicherheitsbauteile und Solaranlagen.
1964 geht im Meinerzhagener
Werk die 30.000-Tonnen-Schmiedepresse in Betrieb, eine der weltweit
größten privat finanzierten Schmiedepressen. 1966 steigt Otto Fuchs
mit dem legendären Porsche-Flügelrad in die Großserienfertigung für geschmiedete Aluminiumräder ein.
Otto R. Fuchs kann auf ein beeindruckendes Lebenswerk blicken, denn
die Otto Fuchs-Gruppe gehört mit
einem Umsatz von 2,2 Mrd. Euro zu
den größten Mittelständlern Deutschlands. Nach wie vor ein Familienunternehmen ist der Unternehmensverbund heute mit der Herstellung von
Hightech-Produkten für die Luft- und
Raumfahrtindustrie sowie für die Automobil- und Bauindustrie breit aufgestellt und in zukunftsträchtigen expandierenden Märkten vertreten.
Geboren wurde Otto R. Fuchs am
14. Januar 1928 im sauerländischen
Meinerzhagen als Sohn von Hans Joachim Fuchs, dem geschäftsführenden
Gesellschafter der Firma Otto Fuchs.
Nach dem Studium des Maschinenbaus und Berufspraktikum in den USA
tritt Otto R. Fuchs 1954 in den väterlichen Betrieb in Meinerzhagen ein,
wo der zunächst die Abteilung Druckund Spritzguss (sog. Spritzerei) leitet.
1956 übernimmt er die Leitung des
Zweigwerks Dülken, das in den sieben
Jahren unter seiner Führung einen beachtlichen Aufschwung erlebt.
1963 tritt Otto R. Fuchs in die Geschäftsführung des Familienbetriebes
ein und wird als weiterer Kommanditist der Gesellschaft aufgenommen. Es
beginnt der Ausbau des Meinerzhagener Unternehmens zu einem international operierenden Konzern.
Ein Jahr später erwirbt Otto Fuchs
die Firma Heinz Schürmann & Co.
aus Bielefeld: einen kleinen Betrieb
zur Fertigung von Schaufenstern aus
Aluminiumprofilen. Heute ist die
Schüco International KG weltweit
vertreten und Marktführer hochwer-
Foto: Otto Fuchs KG
Am 14. Januar dieses Jahres feierte Otto Rudolf Fuchs, eine der
herausragenden Unternehmerpersönlichkeiten der Aluminiumindustrie in Deutschland, seinen
80. Geburtstag.
Otto Rudolf Fuchs
Otto R. Fuchs übernimmt 1974 die
persönliche Haftung und damit die
Leitung des Konzerns, der 1979 mit
seiner Initiative um eine weitere
Tochtergesellschaft, die Weber Metals Inc., Los Angeles, USA, erweitert
und zu einer der führenden Aluminiumschmieden von Gesenk- und Freiformschmiedeteilen für die Luftfahrt
ausgebaut wird.
Nach dem Tod des Vaters im Jahre
1992 erfolgt eine Neuordnung der Beteiligungen an der Gesellschaft. Otto
R. Fuchs und seine Halbschwester
Christiane Fuchs übernehmen je 50
Prozent der Gesellschaftsanteile, die
übrigen Gesellschafter scheiden aus
dem Unternehmen aus. 1993 vollendet Otto R. Fuchs sein 65. Lebensjahr
und beendet die Geschäftsführung als
persönlich haftender Gesellschafter,
begleitet jedoch weiterhin aktiv das
Unternehmen als Kommanditist.
Nach Überwindung der konjunkturellen Rezession Anfang der 1990er
Jahre nimmt das Unternehmen wieder Fahrt auf. Mit dem größten amerikanischen Hersteller von gegossenen
Aluminiumrädern gründet Otto
Fuchs in Ungarn ein Joint Venture
zur Herstellung von gegossenen und
geschmiedeten Rädern für die europäische Automobilindustrie. Der Betrieb wird 1997 aufgenommen.
Ein weiteres Joint Ventures folgt
2006 in Südafrika. Hier produziert
Otto Fuchs in East London an der südafrikanischen Ostküste in Großserie
Aluminium-Querlenker zusätzlich zu
der Meinerzhagener Fertigung für einen ihrer größten Kunden: die Daimler AG. 2007 wird im Meinerzhagener
Werk eine der modernsten Ringwalzanlagen in Betrieb genommen. Mit
dieser Investition wird Otto Fuchs
zu einem bedeutenden Anbieter von
Triebwerksringen und -scheiben.
Für seine persönliche und unternehmerische Lebensleistung und sein
Engagement für das wirtschaftliche
und gesellschaftliche Wohl der Stadt
Meinerzhagen und seiner Bürger wird
Otto R. Fuchs im Jahre 2003 das Ehrenbürgerrecht und der Ehrenring
der Stadt Meinerzhagen verliehen.
Zur Förderung des kulturellen Lebens
in seiner Heimatstadt Meinerzhagen
gründet Otto R. Fuchs eine Stiftung,
die er mit einer Spende in Höhe von
einer Million Euro ausstattet.
Verwurzelt in seiner Heimat Meinerzhagen im südlichen Westfalen, ist
Otto R. Fuchs nicht nur „aktiver“ Gesellschafter seines Unternehmens,
sondern in seiner Freizeit unter anderem leidenschaftlicher Pferdezüchter.
Aus seiner Zucht von Hannoveranern
hat so manches Nachwuchspferd
große Berühmtheit erlangt.
Die Redaktion ALUMINIUM gratuliert nachträglich zum Geburtstag.
N
Bezugsquellen sinnvoll nutzen
Auf den Seiten 112 bis 128 präsentieren führende Ausrüstungspartner
der Aluminiumindustrie ihr Angebot. Nutzen Sie diese wertvollen Informationen!
ALUMINIUM · 1-2/2008
27
WIRTSCHAFT
EEG-Ausgleichsregelung für stromintensive Betriebe
Ersparnisse von mehr als einer halben Milliarde Euro
um 11,5 Prozent gestiegen. Auch die
gereichten Anträge entschieden und
Zahl der insgesamt bewilligten Bezum Jahreswechsel 2007/08 die Begrenzungsbescheide hat sich deutlich
scheide versandt.
erhöht (+15%). Hauptgrund für diesen
Die BAFA setzt für jede antragsbeAnstieg dürfte sein, dass angesichts
rechtigte Abnahmestelle individuelle
steigender Strompreise eine wachProzentsätze fest. Diese bilden den
sende Zahl von Unternehmen das
eigentlichen Kern der Regelung. Sie
Kriterium eines mehr als 15-prozenlegen für das jeweils folgende Katigen Anteils der Stromkosten an der
lenderjahr fest, welcher Anteil des
Bruttowertschöpfung erfüllt.
an „privilegierten Abnahmestellen“
Zwischen den einzelnen Branchen
bezogenen Stroms maximal aus EEGbestehen deutliche Unterschiede
Quellen stammen muss, unabhängig
beim jeweiligen Stromverbrauch. So
von der jeweils im Folgejahr tatsächlich bezogenen
Regelung
Entlastungswirkung für die durch § 16
Strommenge.
EEG begünstigten Unternehmen in 2008
In die BerechKonzessionsabgabe
1.300 Mio. Euro
nung
fließen
dabei u. a. die
Stromsteuer
800 Mio. Euro
nachzuweiKWKG
60 bis 70 Mio. Euro
senden tatsächEEG
650 Mio. Euro
lichen Kosten
des nicht nach Überschlägige Abschätzung der 2008 zu erwartenden finanziellen
Nach dem EEG werden die Kosten
EEG vergüteten Entlastungen bei den durch § 16 EEG begünstigten Unternehmen
für den Ausbau erneuerbarer EnerStroms ein. Die
gien auf die Stromverbraucher umhaben die begünstigten Unternehmen
in den Bescheiden für die einzelnen
gelegt. Für besonders stromintensive
mit dem höchsten Stromverbrauch
Abnahmestellen
festgeschriebenen
Unternehmen enthält das EEG eine
aus den Bereichen Aluminium und
Begrenzungssätze
unterscheiden
sich
Ausgleichsregelung, mit der die ZuChemie jeweils einen Jahresstrombedaher
in
dem
Maße,
wie
die
Kosten
satzlasten wieder ein Stück weit zuzug von mehreren Tausend GWh.
des
konventionell
bezogenen
Stroms
rückgenommen werden. Durch eine
Von der Regelung profitieren in
bei
den
jeweiligen
EnergieversorEnde 2006 in Kraft getretene Ändeder
Branche „Erzeugung und erste
gungsunternehmen
differieren.
rung des EEG beträgt diese Umlage
Bearbeitung
von NE-Metallen“ 19
Für
2008
hat
die
BAFA
eine
so
für besonders stromintensive UnterUnternehmen
mit einem privilegiergenannte
privilegierte
Strommenge
nehmen inzwischen „lediglich“ 0,05
ten Letztverbrauch* von 10.653
von insgesamt
GWh; in der Metallerzeugung und 75.874
GWh
bearbeitung sind es 33 Unternehmen
ermittelt, die
mit einem Letztverbrauch von 1.966
nicht mit dem
GWh. Die vier Branchen NE-Metalle,
vollen, sondern
Chemie, Eisen/Stahl und Papier stelbegrenzten
len etwa drei Viertel des gesamten
EEG-Anteil
privilegierten Letztverbrauchs.
abzunehmen
Die BAFA führt darüber hinaus an,
ist.
Hiervon
dass Sonderregelungen bei der Ökoentfallen etwa
steuer, im Kraft-Wärme-Koppelungs94
Prozent
gesetz sowie bei den Konzessionsab(71.283 GWh)
gaben den privilegierten Strombezug
auf
UnternehBranchenverteilung des privilegierten Letztverbrauchs nach § 16 EEG
für 2008
der 2008 begünstigten Unternehmen
men des prozusätzlich in einer Größenordnung
duzierenden
von gut zwei Milliarden Euro (BAFAGewerbes.
Diese
Strommenge
liegt
Cent pro Kilowattstunde. Für eine
Schätzung) verbilligen (s. Tabelle).
damit
etwa
fünf
Prozent
über
dem
Aluminiumhütte summiert sich die
Ergebnis
des
Bescheidverfahrens
für
Zahl hinter dem Komma dennoch auf
2007 (72.040 GWh).
einen Millionenbetrag. Im Auftrag des
* Beim sog. privilegierten Letztverbrauch handelt es sich um die Stromverbräuche, die die
Die Zahl der begünstigten UnterBMU hat das Bundesamt für Wirtantragstellenden Unternehmen zur Jahresmitte
nehmen
liegt
2008
bei
insgesamt
426.
schaft und Ausfuhrkontrolle (BAFA)
auf Grundlage des letzten abgeschlossenen Geschäftsjahres geltend machen.
Sie ist damit gegenüber dem Vorjahr
über die nach dieser Regelung einUnternehmen, die aus produktionstechnischen Gründen besonders viel Strom benötigen, werden
laut Bundesumweltministerium
(BMU) dieses Jahr erneut bei
ihren Stromkosten entlastet, darunter 378 Firmen des produzierenden Gewerbes. Das Gesamtvolumen der Entlastung liegt 2008
laut BMU in einer Größenordnung
von 650 Mio. Euro. Von der Ausgleichsregelung des ErneuerbareEnergien-Gesetzes (EEG) profitieren rund zehn Prozent mehr
Unternehmen als im Vorjahr.
Hauptgrund hierfür ist, dass angesichts steigender Strompreise eine
wachsende Zahl von Unternehmen
die Eingangskriterien der Regelung erfüllen.
28
ALUMINIUM · 1-2/2008
ECONOMICS
ALUMINIUM · 1-2/2008
29
A L U M I N I U M S M E LT I N G I N D U S T R Y
Primary aluminium activities
at the turn of the year 2007/08
R. P. Pawlek, Sierre
Africa
During 2007, Dubai Aluminium Co
(Dubal) signed a joint venture deal
with Mubadala Development Co, Algerian energy company Sonatrach,
and utility firm Sonelgaz to build
Algeria’s first 700,000 tpy aluminium smelter on the west coast in the
Béni Saf region with an investment of
US$5bn.
Rio Tinto Alcan signed an amended agreement with the government
of Cameroon on access to water resources for the construction of a new
1,000 MW hydro power system in the
West African country. That agreement
paves the way for the start of technical studies on a potential 400,000 tpy
greenfield smelter. A go-ahead decision on the smelter project is expected by the end of 2009. This project
is separate from a previously-agreed
study on the expansion of the existing
90,000 tpy Edea smelter operated as a
joint venture between the government
and Rio Tinto Alcan. The brownfield
project, lifting capacity to 300,000 tpy,
continues to make progress.
Century Aluminum Co. signed a
memorandum of understanding with
the Republic of Congo for the exclusive right to develop a bauxite mine,
alumina refinery and aluminium
smelter.
BHP Billiton signed an agreement
with the government of the Democratic Republic of Congo (DRC) to
jointly investigate the development
of a 800,000 tpy aluminium smelter.
Russia’s aluminium producer UC
Rusal closed a deal to acquire a ma-
30
jority stake in the Aluminium
Smelter Company of Nigeria
(Alscon) in Akwa Ibom from
the Nigerian Bureau of Public Enterprises. The transaction will add almost 153,000
tpy to Rusal’s aluminium
production capacity. The
smelter should go online by
the end of 2007. Once fully
operational, the smelter can
provide up to 1,800 jobs.
Furthermore, Rusal announced it could partner
South African authorities in
the construction of an energy
and metallurgical complex.
The South African government expressed interest in
working with Rusal on the
project, which would include
building a 750,000 tpy capac- Alcan’s Kitimat smelter in British Columbia
ity aluminium smelter and a
1,300 MW coal-fired power plant.
Alcoa, USA, announced on 7 May 2007
Alcan signed a contract worth
to make an offer to acquire all of the
more than US$100m with a joint
outstanding common shares of Alcan
venture consisting of SNC-Lavalin,
for US$58.60 in cash and 0.4108 of a
Hatch, and Murray & Roberts for the
share of Alcoa common stock for each
front-end engineering design (FEED)
outstanding common share of Alcan.
and management of the first phase
Based on Alcoa’s closing stock price
of the proposed Coega Aluminium
on 4 May 2007, the offer had a value of
smelter (360,000 tpy). South African
US$73.25 per Alcan share or approx.
power supplier Eskom will take a 15%
US$33bn in enterprise value, but was
stake in the smelter.
then outbid by Rio Tinto.
On 12 July Rio Tinto announced
its
friendly US$38.1bn all-cash offer
North America
for Alcan. The offer of US$101 per
share represents a 32.8% premium
Alcan signed a US$130m contract
to Alcoa’s offer of US$76.03 per
with the French energy company
share, based on Alcoa’s share price
Areva for the design, engineering and
of 11 July. Unlike Alcoa’s hostile bid,
construction of a new high-voltage
Rio Tinto has the backing of Alcan’s
sub-station that will power Alcan’s
board. On 25 October, Alcan and Rio
planned AP50 pilot plant in Saguenay,
Tinto group following the successful
Quebec, Canada.
offer for Alcan by a subsidiary of Rio
Alcan also signed a contract with
Tinto, became the global aluminium
Bechtel to produce a detailed feasibilproducer known as Rio Tinto Alcan.
ity study for the planned expansion
The Alcan name was delisted on the
of Alcan’s Kitimat smelter in British
respective stock exchanges on 15
Columbia. Alcan announced its intenNovember. Rio Tinto is now itself
tion to lift capacity at Kitimat from the
the object of takeover bids: both BHP
current 280,000 tpy to 400,000 tpy
Billiton and China Investment ©
over a 2009 to 2011 timeframe.
Photo: Rio Tinto Alcan
This summary by continent reveals record global expansion
with new smelters being built in
areas where there is cheap energy.
But there is also continued concentration of the market as major
players merge or buy out others.
This overview is divided into continents.
ALUMINIUM · 1-2/2008
To power your operation while lowering
consumption we provide you with stable
highly efficient electrical energy supply,
distribution and conditioning. To increase employee productivity and engineering efficiency, we offer you powerful control
systems. To improve dynamic performance and reduce power losses, we provide high-tech
drive systems. To increase furnace productivity and save energy, utilize our most effective
electromagnetic stirrers. To ensure environmental compliance, reduce product
standard deviation and increase production, apply our expert and optimization
solutions. Maximize the return on project investment through our vast knowledge,
know-how and extensive experience. Using quality ABB products helps you achieve
industry leading productivity. Visit us at www.abb.com/aluminium
A L U M I N I U M S M E LT I N G I N D U S T R Y
Corporation have made rival bids.
Alcoa’s Intalco smelter restarted a
second potline at its Ferndale, Washington, operation. With the first molten
metal poured, the operation’s capacity increased some 90,000 tonnes in
2007. The smelter has idled two potlines since April 2003, and the restart
brings the plant’s output to 180,000
tpy, two-thirds of its rated capacity.
Alcoa restarted one line at its Tennessee aluminium smelter. That line
had been involuntarily idled due to a
direct lighting strike in a severe electrical storm in mid-April. The potline
produces about 107,000 tpy and was
again fully operational at the end of
June.
Xstrata sold the aluminium business it inherited from its acquisition of
Falconbridge in 2006 to private equity
firm Apollo Management LP for some
US$1.15bn in cash.
Northwest Aluminum Specialties
signed an agreement to dismantle the
long-idled aluminium smelter it owns
in The Dalles, Oregon and to restore
the site. Northwest has contracted
this work to Pro-SE Services Inc., a
Californian company that specializes
in engineering and demolition services, to be completed during 2009. In
October Northwest Aluminum Co did
not exercise its option to receive 100
MW of power from Bonneville Power
Administration (BPA). As a result, the
100 MW will be divided proportionally between Alcoa and Columbia
Falls Aluminum, owned by Glencore
International. Alcoa received an additional 70 MW to bring it up to 390
MW and Columbia Falls will get 30
MW bringing its total to 140 MW.
South America
Argentine aluminium producer Aluar
geared up to start bringing online its
newly-constructed smelter expansion. The project lifted the plant capacity from 280,000 tpy to 410,000 tpy
and energized 144 new cells. The first
phase expansion, which added 130,000
tpy new capacity in an US$850m
investment, was inaugurated on 3
September. Aluar confirmed it will
move ahead immediately with a new
US$400m investment at its Puerto
Madryn smelter to raise primary alu-
32
minium capacity by another 105,00
tpy to 515,000 tpy by late 2009.
Brazilian aluminium producer
CBA started commissioning the next
stage capacity increase at its Sorocaba
aluminium smelter, expanding plant
capacity from the current 405,000
tpy to 475,000 tpy. Cia Brasileira do
Aluminio (CBA) announced it may expand its primary aluminium smelting
capacity in Sao Paulo state to 700,000
tpy from the current 475,000 tpy.
Alcoa announced investments in
the Serra do Facaño hydroelectric
power project to be built on the Sao
Marcos River in Brazil’s central region. Alcoa will hold 35% of the new
company. The investment is part of
Alcoa’s long-term strategy of developing energy projects in Latin America
to support its smelters and to move
toward self-sufficiency for its energy
needs.
The president of Guyana used a
trip to Moscow to sign a letter of intent
with Rusal on the construction of an
integrated aluminium complex in the
South American country.
Chinese alumina producer Bosai
Minerals Group announced plans
to construct an 800,000 tpy alumina
refinery and 400,000 tpy aluminium
smelter in Guyana. For this, Bosai
Minerals intends to invest 10bn yuan
(US$1.3bn) in building facilities and a
1,000 MW hydro power plant in Guyana within the next five years.
The governments of Venezuela
and Nicaragua announced a possible
strategic alliance that could see the
development of an aluminium smelter
in Nicaragua. Studies are underway
in Nicaragua to create a company to
produce aluminium for the Nicaraguan and Latin American markets.
A group of investors announced
plans to build an aluminium smelter
in the Republic of Suriname. Plans
for the 250,000 tpy smelter were disclosed by Bisram Chanderbosh, president of Suriname Industrial Engineering & Vehicle Services.
The second aluminium smelter
project planned for the Caribbean
country of Trinidad & Tobago was
running late due to environmental concerns. The first project – the
340,000 tpy plant proposed by Alcoa – has already been put on the
back-burner after the government
was forced to back down on its proposed location under pressure from
environmental lobbying. The second
project, Alutrint, envisages a smaller
125,000 tpy smelter.
UC Rusal and Corporacion Venezolana de Guayana (CVG) signed a
letter of intent to explore alumina and
aluminium projects in Venezuela.
Asia
Dubal and Mubadala Development
Co, a wholly owned investment vehicle of the government of the Emirate
of Abu Dhabi, signed a joint venture
for the development of Emirates Aluminium (Emal), which plans to build
a 1.4m tpy aluminium smelter in Abu
Dhabi. Construction of the smelter
is slated for two phases, the first of
which is projected to cost US$5bn
and the second US$3bn. The smelter
is to be located at the Khalifa Port and
Industrial Zone in Abu Dhabi.
Rio Tinto also announced plans
to develop a 550,000 tpy aluminium
smelter together with Abu Dhabi Basic Industries Group (Adbic) at a cost
of about US$5bn.
Aluminium Bahrain (Alba) once
more announced plans to raise aluminium smelting capacity by a further
320,000 tpy to more than 1m tpy, and
is looking to expand through joint
ventures in other Gulf countries. Alba
intends to install a sixth reduction line
at an estimated cost of US$1.7bn to
take capacity to 1.2m tpy.
Anshun Huangguoshu Aluminium
Co, a privately-owned producer based
in China’s southern Guizhou province,
doubled capacity to 200,000 tpy.
Guizhou Liupanshui Shuangpai Aluminium Co commissioned a
50,000 tpy project, doubling its total
capacity to 100,000 tpy.
In North China, Shaanxi Changhong Aluminium Co is building
a 100,000 tpy aluminium project,
scheduled to come on stream by June
or July 2007.
Aluminium Corporation of China
(Chalco) announced plans to buy three
other aluminium smelters. The acquisitions increase Chalco’s aluminium
capacity and market competitiveness,
Chalco’s listed subsidiaries Shandong
ALUMINIUM · 1-2/2008
S
AML S M E L T I N G
A LPU E
M ICN II U
Aluminium Industry Co (SAIC) and
Lanzhou Aluminium Co (LAC) said
in separate statements. Chinalco is to
buy 80% of the Inner Mongolian government’s wholly owned Baotou Aluminium group, which in turn owns
55% of BAC Chinalco, and received
government approval to buy a 72%
stake in Shaanxi Nonferrous Metals
Group, which in turn owns 70.9% of
Tongchuan, and is also to buy 100%
in Liancheng. BAC produced 307,000
tonnes in 2006, Tongchuan 270,000
tonnes and Liancheng 155,000 tonnes.
Chalco is looking to take full ownership of SAIC and LAC in a US$1bn
deal that will enable it to list on the
Shanghai Stock Exchange.
China’s Aba Aluminium Plant in
Sichuan province completed expansion works and double its ingot capacity to 40,000 tpy in June.
Shanxi Guanlu Aluminium announced plans to expand ingot capacity by 100,000 tpy on its existing 200
kA line with 70,000 tpy current capacity. The third, a 300 kA potline with a
I N D U S TTRMYS & A L U M I N I U M I N D I A 2 0 0 8
capacity of 200,000 to 220,000 tpy is a
joint venture with Chalco (59%).
Datun Aluminium in Jiangsu province started expansion works on its
ingot capacity in 2007 which will lift
capacity by 150,000 tpy to 260,000 tpy
from the current 110,000 tpy.
China suspended the construction
of Qiya Aluminium Industry Group’s
150,000 tpy aluminium smelter, because it did not have the necessary
environmental approval.
Shanxi Zhenxin Group had to stop
construction of the second phase of
its 200,000 tpy aluminium smelter
project after the environmental protection agency of China accused the
company of flouting environmental
laws. The first phase of the project,
which was completed in 2002, remains in production.
Century Aluminum Company
signed a memorandum of understanding (MoU) with the Guangxi
Investment Group Company (GIG)
to explore the feasibility of developing an aluminium smelter project and
related bauxite mine and alumina refinery in China.
At least 14 people were killed and
another 59 injured in a molten aluminium spillage at a casting plant
owned by a subsidiary of China’s
Weiqiao Aluminium. The accident
happened on 19 August, when molten
aluminium reacted with cooling water
at the plant. The reaction caused an
explosion of steam that blew the roof
of the building, killing workers who
were holding a meeting at the time.
Alcoa sold its equity holdings in
the Aluminium Corporation of China
Ltd (Chalco) through a placement
of shares for approx. HK$15.3bn
(US$2.0bn).
Chalco acquired Shaanxi Tongchuan Aluminium Co at the end of
2007. The acquisition of Tongchuan
boosts Chalco’s aluminium by 250,000
tpy to 3.75m tpy currently.
China’s Mimetals Corp’s alumina and aluminium arm, Minmetals Resources Limited (MRL)
announced investments of 680m ©
C
D
C
D
m
u
i
m
n
u
i
i
min
for Al um
cassttiinngg
Drache
umwelttechnik
ALUMINIUM
· 1-2/2008
33
ALUMINIUM · 1-2/2008
33
A L U M I N I U M S M E LT I N G I N D U S T R Y
yuan (US$90m) in Qinghai Province
Investment Group(QIG), an aluminium smelter and hydropower producer.
Vimetco acquired a Chinese aluminium producer with 110,000 tpy
capacity for around US$35m. Majority-owned Henan Zhongfu Industry
Co paid 266m yuan (US$35m) for
Lifeng Aluminium, which is located
in Linzhou, Henan province. Lifeng
Aluminium has a workforce of 1,300.
At the end of 2007, China announced guidelines for those who
wish to enter the domestic aluminium
industry, according to the National development and Reform Commission.
All new development projects in the
aluminium sector, including mining,
alumina refining, primary smelting
and recycling, as well as fabrication
plants, must abide by all requirements
of the various state departments.
These include basic requirements for
proper land use, safety and environmental regulations. Under the guidelines, smelting facilities cannot be
built within 1 km of protected regions,
which include: water preservation
areas, protected farming areas, protected natural reservations, famous
scenic attractions, major cities and
their nearby surrounding countryside, hospitals, as well as food, medical and electronic business. For new
primary smelting projects, approval is
also required from the State Council’s
investment management division. In
the near term, only upgrading projects
to suit environmental requirements
and to replace outdated machinery
are being considered for approvals.
These projects also require guaranteed alumina feed supply, sufficient
power supply, and efficient transport
conditions.
In February 2007, India’s top nonferrous producer Hindalco Industries agreed a friendly takeover bid
for Novelis in a deal that values the
North American aluminium company at about US$6bn, including about
US$ 2.4bn of debt. Hindalco produces
about 429,000 tpy of primary aluminium, and is planning a greenfield expansion that will take its capacity to
1.5m tpy by 2011. On 15 May Hindalco completed the US$6bn purchase of
Novelis, which became a subsidiary of
34
Mumbai-based company.
Hindalco Industries proved a coalmining joint venture to feed its much
delayed 500,000 tpy integrated aluminium smelter project in Orissa.
Emirate of Ras Al-Khaimah agreed
a US$2bn joint venture with the government of Andhra Pradesh to build
an alumina refinery and an aluminium smelter in the eastern Indian state.
The alumina refinery will produce 1m
tpy of alumina while the smelter will
have an initial capacity of 250,000
tpy which may be doubled at a later
date.
Vedanta Resources announced
plans to more than double capacity
to 900,000 tpy of primary aluminium
by 2009, once it has brought its new
500,000 tpy greenfield project in
Orissa on stream. The smelter will
be commissioned early next year and
ramped up to reach full capacity in
early 2009.
The Indian aluminium producer
Balco signed an MoU with the state of
Chattisgarh on a major expansion of
its Korba smelting complex. The MoU
provides for a further investment of
US$2bn to lift capacity by a further
650,000 tpy, bringing total capacity
at the Korba complex close to the1m
tpy level.
Dubal and Larsen & Toubro proposed to jointly set up a 3m tpy alumina refinery and a 220,000 tpy aluminium smelter in the Indian state of
Orissa.
India’s state-owned National Aluminium Company (Nalco) announced
plans to double its alumina capacity
to 3m tpy and smelter capacity to
710,000 tpy. No time frame has been
scheduled, but work towards these
third-phase targets as well as a 700
MW power plant will begin at the end
of 2008, when Nalco’s current expansion ends. Nalco is in the process of
raising alumina capacity from 1.57m
tpy to 2.1m tpy, and its smelter capacity from 350,000 tpy to 460,000 tpy.
Ras-Al-Khaima Investment Authority (Rakia), a provincial investment company of the United Arab
Emirates, is planning to invest US$2bn
in a greenfield integrated aluminium
complex in the India state of Andhra
Pradesh. Rakia has singed an agreement with with the Andhra Pradesh
Mineral Development Authority for
bauxite reserves to feed a planned
facility in Visakhapatnam. Rakia considers a 1.5m tpy alumina refinery and
a 350,000 tpy smelter.
The Indian aluminium industry expects to invest Rs1,000bn (US$25bn)
over the next five years, boosting installed aluminium smelting capacity
from the existing 1.1m tpy to 4m tpy.
The announcement at the end of 2007
also said consumption of aluminium
in India is growing at 18% per year
compared with the global 4.4%. By
2015, the Indian aluminium use will
grow to 2.75m tpy.
In June 2007, India’s Nalco was
looking for partners to set up a 500,000
tpy aluminium smelter project in Indonesia. However it was not revealed
when the smelter might be built, or
what kind of partnership Nalco was
looking for.
Iran Aluminium Company (Iralco)
officially inaugurated its new Hormozal smelter to complement its existing 120,000 tpy Al Mahdi smelter.
The first phase of the project has a
capacity of 35,000 tpy and that will
rise to 110,000 tpy when the second
and the third phases are completed by
March 2009. The expansion is being
conducted in cooperation with China’s Non-Ferrous Metal Industry’s
Foreign Engineering & Construction
Company Limited (NFC).
Gulf aluminium producer Dubal
will supply its proprietary technology for an expansion of the Al Mahdi
smelter in Iran. The Hormozal expansion of Al Mahdi will see the addition
of a second potline with a capacity of
147,000 tpy, lifting total smelter capacity to 257,000 tpy
Kazakhstan Aluminium Smelter
(KAS), part of Kazakh metals and mining group Eurasian Natural Resources
Corporation (ENRC), has signed a
US$292.8m credit agreement with
the Export-Import Bank of China
(Eximbank). Building the smelter was
complete by the end of 2007, and it
will come on stream in three stages,
with initial output at 62,500 tpy, rising
to 125,000 tpy by 2008 and 250,000
tpy by 2011.
UC Rusal was in talks with the Kazakh government about the possibility of building an aluminium and ©
ALUMINIUM · 1-2/2008
A L U M I N I U M S M E LT I N G I N D U S T R Y
energy complex in the central Asian
country. UC Rusal has approached
the Kazakh authorities with a proposal to invest US$3.5bn in building
a 500,000 tpy aluminium smelter and
1m tpy alumina refinery.
UC Rusal resumed exploring opportunities for building an energy and
metals complex in Kyrgyzstan, after its
failure to accomplish a similar project
in neighbouring Tajikistan.
Rio Tinto announced it might sign
an agreement with the Malaysian
government for the construction of
a 1.5m tpy aluminium smelter in the
state of Sawarak. Many major aluminium companies around the world
are said to be eager to participate in
the project, including Alcoa and BHP
Billiton, as well as China’s aluminium
producer Shandong Luneng Group
and energy company Sinohydro.
In August Rio Tinto and Malaysia’s
Cahya Mata Sarawak (CMS) signed a
heads of agreement for the proposed
development of a 750,000 tpy aluminium smelter in the Malaysian state of
Sarawak. In October Bechtel had been
appointed to undertake an engineering study of the proposed US$2.2bn
new aluminium smelter.
Alcoa was also in talks with the
Malaysian government about the
construction of a 1m tpy aluminium
smelter in the state of Sarawak.
Qatalum, the new aluminium
smelter company in Qatar, a joint
venture between Qatar Petroleum
and Hydro Aluminium AS, has
awarded the contract for its 1250 MW
power plant to a consortium integrat-
ed of General Electric and Doosan
Heavy Industries Construction Co.,
Ltd. Qatalum will be a state-of-theart installation for 585,000 tpy of
high quality aluminium using Hydro
technology. The design incorporates
an option to double the capacity to
1.2m tpy of aluminium. During the
construction phase at the Mesaieed
Industrial City, Qatalum will generate
about 5,500 jobs, and once in operation during 2010, Qatalum will provide 1,000 permanent jobs. The capital investment estimate for the total
Qatalum project is approx. US$5.6bn.
Norsk Hydro and Qatar Petroleum laid
the foundation stone on 19 November
at the 1.7 square km site in Mesaieed
Industrial City, south of Doha.
Two Chinese state entities, China
Non-ferrous Metal Industry’s Foreign
Engineering and Construction Co Ltd
(NFC) and China National Machinery
Industry Corporation (Sinomach),
signed an agreement with Saudi Arabian company Western Way for Industrial Development Co (WWIDC) to
build an integrated alumina-aluminium mega-complex at Jazan in Saudi
Arabia. The agreement provides for a
project with an alumina capacity of
1.6m tpy and a primary metal capacity
of 700,000 tpy for a total investment of
around US$4bn. NFC will take a significant but as yet undisclosed stake
in the complex, as will US metals
trade house Gerald Metals.
Alcan signed a heads of agreement
with Saudi Arabian mining company
Ma’aden to develop a US$7bn integrated aluminium mine-to-metal
project, incuding bauxite mining, a
1.6m tpy alumina refinery, a 1,400
MW power plant and a 720,000 tpy
aluminium smelter.
MMC Corp and the Saudi Binladin
Group signed an agreement with Aluminum Corporation of China (Chalco)
to build a second aluminium smelter
at Jazan Economic City (JEC) in Saudi
Arabia at a cost of US$3bn. The smelter will have a capacity of 1m tpy. The
companies formed joint venture company Sino-Saudi Jazan Aluminium Ltd
to undertake the project, with Chalco
and a Saudi consortium.
Companies including Norsk Hydro
are reported to be competing to become partners with Tajikistan’s sole
aluminium produce Tajik Aluminium
(Talco), which was once more likely
to have been a target of their litigation. Having put its disputes with the
smelter behind, Hydro is confident
their new partnership will flourish.
At the centre of both companies’ ambitions is the 500,000 tpy aluminium
smelter, which has been running at
400,000 tpy in recent years. Hydro
Aluminium will help modernize the
smelter in exchange for increasing
the volume of alumina it supplies to
Talco.
Dubai Aluminium (Dubal) announced plans to raise primary metal
production capacity to 920,000 tpy by
the end of 2008. After the US$230m
ongoing potline 5B and 6B expansion,
Dubal will further raise primary capacity to 945,000 tpy, and casthouse capacity to 1.13m tpy. At the end of 2007,
Dubal announced plans to increase
production to 2.5m tpy by 2015.
Russia’s UC Rusal wants to build
a hydro-electric power plant and
an integrated bauxite-to-aluminium
facility in Vietnam’s southern Binh
Phuoc province. The planned aluminium smelter would have a capacity of
750,000 tpy.
Photo: Norsk Hydro
Australia
Qatalum aluminium plant site
36
In October 2007, Rio Tinto’s takeover offer for Canadian aluminium
producer Alcan received the green
light from the competition watchdogs of Europe and Australia, and
the US$38.1bn takeover created the
world’s largest aluminium producer.
ALUMINIUM · 1-2/2008
S
AML S M E L T I N G
A LPU E
M ICN II U
I N D U S TTRMYS & A L U M I N I U M I N D I A 2 0 0 8
aluminium business in the Netherlands and Germany. Alu-Met, which
is headquartered in Bludenz, Austria,
has two production facilities in Germany. In Kempten Alu-Met produces
55,000 to 60,000 tpy of extrusion billet while in Nachrodt the capacity
is about 80,000 tpy. The aluminium
smelter in Voerde, Germany has a capacity of 90,000 tpy while the smelter
in Delfzjil, the Netherlands has a capacity to produce about 110,000 tpy
of primary aluminium.
Carbone Savoie, a subsidiary of
Alcan based in France, announced
plans to invest US$17m to enhance
equipment at the Notre-Dame-de-Briançon and Lannemzan sites in order
to rapidly meet the needs of its cathode products customers.
Anglo-Dutch steelmaker Corus
Group, which is owned by Tata Steel,
put its remaining primary aluminium
business, which includes two smelters
in the Netherlands and Germany, up
for sale and has received an expression of interest from Trimet. In De-
Rio Tinto obtained all outstanding
common shares of Alcan and delisted
Alcan on 15 November.
In November investors seemed
sure that mining giant BHP Billiton
will continue its US$149bn pursuit of
Rio Tinto, a combination that would
control more than one third of the
world’s iron ore sale. Rio Tinto rejected BHP Billiton’s 3-for-1 share
offer on 8 November, but share price
movements in London and Australia
indicate investors expect that BHP
Billiton will increase its offer, that the
bid will turn hostile or that another
bidder will emerge. BHP confirmed
its approach to its mining rival and
intends to continue to seek an opportunity to meet and discuss its proposal
with Rio Tinto.
Europe
Alu-Met, Europe’s largest privately
owned extrusion billet producer has
thrown its hat into the ring as a possible suitor for Corus Group’s primary
cember, Corus and Aluminium Industrial Acquisition Company Ltd (AIAC)
signed a non-binding letter of intent
for the proposed acquisition of Corus’
aluminium smelters by an affiliate of
AIAC for an undisclosed sum.
The German aluminium producer
Trimet Aluminium AG restarted production at the idled aluminium smelter in Hamburg in April. Some 400 employees were recalled and the official
opening was on May 9. End of 2007 all
270 cells were in full operation.
Hydro Aluminium announced
plans to build an aluminium smelter
in Greenland with a capacity of as
much as 300,000 tpy. Such a metal
production would need 500 MW of
power.
The Greenland Home Rule Cabinet
entered into an MoU with aluminium
company Alcoa over co-operation on
a feasibility study for a 340,000 tpy
capacity smelter in Greenland.
A planned expansion of Alcan’s
smelter Isal in Iceland would see the
implementation of Alcan’s AP35 ©
+( ,,#('%,+/#-(',.+('.#/
'!#'+#'! +(& ,##%#-2'!#'+#'!-(
)%'-,#!''(',-+.-#('
(&)%--#%(+&)%'-, (+-"
,('+2%.&#'#.&#'.,-+2,('
,--( -"+-(&)(''-,,.",-#%-%
+(-+2+.& .+',,-#'! .+',
,-#'!&"#',"#)+2+,0#-"-"
+%-.1#%#+2*.#)&'-
+( ,,#('%+($-'!&'- (+
+-#('(&&#,,#('#'!')%'-
&#'-'',0%%,-+#'#'!( ()+-#('
)+,(''%')%'-&'!&'-
(+,-0!4 #+3#++&'2 (' 1
#%#' (%.-!&" 000%.-!&"
A L U M I N I U M S M E LT I N G I N D U S T R Y
38
Alcoa opened its new 280,000 tpy
prebake anode plant in Mosjoen, Norway. The facility produces anodes for
Alcoa’s Fjardaal aluminium smelter
in Iceland and for the Mosjoen aluminium smelter in Norway. The companies spent NOK3bn (US$528m)
on the project, which employs 100
workers.
once fully ramped up.
UC Rusal started of a major modernisation programme at its giant
Bratsk smelter, which with nameplate
capacity of 983,000 tpy is the world’s
largest single smelter.
In November the Krasnoyarsk
Aluminium Smelter completed the
installation of automatic alumina
Photo: UC Rusal
technology, raising the total capacity
to 460,000 tpy. However, Alcan lost
its exclusive rights to power supplies
which would have enabled the company to expand its Isal smelter.
Alcoa started commissioning the
340,000 tpy Fjaardal smelter and celebrated the official inauguration at
the beginning of June. To compensate
for slight power project delays, Alcoa
has secured some bridge power, but
reached full capacity at the beginning
of 2008.
Century Aluminium of Monterey,
California, is moving ahead with plans
for its second smelter in Iceland. To be
located in Helguvik, approx. 25 miles
south of Reykjavik, the smelter would
have an initial capacity of 150,000 tpy
and could be expanded to 250,000
tpy.
Since July, Century Aluminium’s
40,000 tpy has been commissioning
the expansion at its Grundartangi
smelter in Iceland. The ramp-up was
completed at the end of November
2007, lifting capacity at the smelter to
260,000 tpy.
Alcan sold its Vlissingen smelter in
the Netherlands to Klesch & Company
Ltd (Klesch).The transaction closed in
summer 2007. The Vlissingen aluminium plant employs some 700 people
and has a capacity of 200,000 tpy of
primary aluminium, with a turnover
of approx. US$600m in 2006.
Hydro Aluminium of Norway announced investments of NOK 340m
(US$55.74m) in expanding the four
gas scrubber units at its aluminium
plant at Sunndalsøra. The work will
be complete by November 2008.
On 13 June Hydro cut off power to
the last Søderberg pots at its Årdal
aluminium smelter. Capacity at Årdal
fell from 220,000 tpy to 180,000 tpy
as a result of the phase-out of the Søderberg potline.
At the beginning of July the Norwegian Ministry of the Environment
conceded temporary emission limits
for the Søderberg aluminium production line at Karmøy. The limits are 3.2
kg/h for PAH (polycyclic aromatic hydrocarbons) and 35 kg/h particulates,
and they postpone the closure of the
Søderberg line until the end of 2009,
when strict new emission limits come
into force.
UC Rusal’s Bratsk smelter
In January 2007, Russia approved in
principle the planned merger between
Rusal, Sual and the alumina assets of
Swiss trading company Glencore. The
new company – United Company
Rusal – will produce 4m tpy of aluminium and 11m tpy of alumina, with
a workforce of some 110,000 people
in 17 countries on five continents.
The companies also obtained approvals from anti-trust authorities outside
Russia. On 27 March 2007, Rusal, Sual
and Glencore announced the completion of the deal to combine their assets
and create United Company Rusal.
UC Rusal and HydroOGK, Russia’s leader in the area of renewable
energy, began construction of the
Boguchanskiy Aluminium Smelter.
The 600,000 tpy will be one of Russia’s five largest. Total investment
in this project is expected to reach
US$2.3bn. The foundation stone was
laid on 15 May 2007 in the village of
Tayozhny, Krasnoyarsk region.
The construction of a fifth potline
at UC RusAl’s Irkutsk smelter was
on track for completion in the fourth
quarter of 2007. The new line boosts
the plant’s capacity from the existing
290,000 tpy to around 450,000 tpy
point-feeders, having invested over
US$38m.
UC Rusal signed a cooperation
agreement with the government of
Russia’s Saratov region for the construction of a major energy and metals
complex. The complex will include
a significant expansion of the Balakovsky nuclear power plant, with UC
Rusal building the fifth and sixth reactor blocks generating 2,000 MW, as
well as the construction of the world’s
largest aluminium smelter with a capacity of 1.05m tpy.
UC Rusal signed an MoU on an
integrated energy/aluminium complex with the local government of Sakhalin. Construction of a 2,300 MW
power plant using coal from the Solntsevskiy coal mine would precede that
of a 750,000 tpy smelter.
At the end of 2007, UC Rusal announced its aim to lift annual aluminium production capacity to 6m tpy
and alumina production to17m tpy by
2013. This represents a 50% increase
in current metal production capacity. Some of that will come through
upgrades to the existing smelter network, but more will come through
greenfield smelter projects.
N
ALUMINIUM · 1-2/2008
S
E ICN II UAML S M E L T I N G
A LP
UM
INDUSTR
TM
Y S & ALUMINIUM INDIA 2008
Self-lifting crane modernizes older potlines
D. Madden, Gladstone
The design of many older smelters
leaves no choice but to reline pots in
situ. By contrast, modern smelters are
designed with crane capacity, as well
as built-in transfer facilities, so that
they can complete pot relining outside
the operating pot line. This increases
production by a significant fraction, in
order of 1%, worth millions of dollars.
Southern Cross Engineering’s unique
crane design is now finding its way
into existing smelters previously constrained by their technology and/or
building design.
The crane and its operation
This design is unique in that it is transported to the potline and there lifts itself onto the existing crane rails using
an on-board hydraulic jacking system.
The complete installation takes about
one hour. The attached lifting beam
can then lift the pot evenly.
The crane is remotely operated
by radio control, so allowing the operator to carry out all operations from
the floor. Once installed, the crane is
driven to the pot to be removed; there
the pot is attached to the crane via
the specially designed lifting beam,
and is then lifted clear of the existing
pot superstructures. The crane next
transports the pot to the centre passageway, and loads it onto a trailer for
transport to a pot dig-out building. The
crane then picks up the new, relined
replacement pot, delivers it to its position in the line, and installs it there.
Turn-around time is approximately 2
hours. The crane finally lowers itself
from the rails, and it is then removed
from the potline hall and stored in a
simple shelter, ready for re-use whenever needed.
There are many important benefits of being able to remove the pot
ALUMINIUM
· 1-2/2008
39
Photo: Holcan
An exciting new development
allows smelters to remove and
install whole pots complete with
linings, using a crane design developed by Southern Cross Engineering (SCE) of New Zealand.
and carry out the relining in a facility outside the pot line. The return on
investment (ROI) is realised in a very
short period, in some cases in months
rather than years.
With modern smelters pushing the
envelope for ‘world’s best practice’ in
areas of
• Health and safety
• Current efficiency
• Lining life
• DC kilowatts per tonne
it is vital for the older smelters to be
creative with their capital spending
in order to capture the ‘low hanging
fruit’ that offers high returns that are
easily measured.
With metal prices and metal demand at all time highs, any loss of
metal production due to reconstruction time constraints becomes an important issue.
Where are some of the costs incurred with reconstruction of pots in
situ on the line?
• Lost production, estimated at three
weeks per pot
• Power capacity paid for but not
used
• Daily potline operations disrupted
• Hostile environment for potline
workers
• Low productivity due to working
environment
• Voluminous construction equipment encumbers the potline
• Many construction personnel
working in potline, creating extra
safety issues for operation
• Production labour paid for but not
used.
The following calculations show the
benefits in monetary terms of completing this work outside the line for a
typical smelter: These calculations are
based on western world smelter costs,
using the following assumptions:
• Typical plant design Kaiser P69
• Tonnage 250,000 tpy with 500 pots
• DC kWh/tonne 13,500 at 2.5 cents
per kWh
• Five year lining life with 100
relines per year
• Pot production 1.4 tpd
• Average reconstruction time per
pot 18 days
• LME price US$ 2,500 per tonne
• 900 man hours to reconstruct pot
at US$ 60 per hour
• Based on 1,000 employees.
Lost production
18 days x 100 pots = 1,800 pot-days
1.4 tonnes x 1,800 days = 2,520 tonnes
of lost production
US$ 2,500 x 2,520 tonnes = US$
6,300,000
Lost production income due to reconstruction in the line is US$6.3m.
Power paid for but not used
2,520 tonnes x 13,500 kWh per tonne
= 34 million kWh at 2.5 cents/kWh =
US$ 850,000
Power paid for but not used is US$
850,000.
©
ALUMINIUM · 1-2/2008
39
A L U M I N I U M S M E LT I N G I N D U S T R Y
Excess labour costs
Estimated direct labour reconstruction productivity loss due to work
constraints associated with working
in an operating pot line; estimated
reconstruction labour efficiencies
captured by reconstructing outside
operational pot line 20%:
900 hours estimated cost to reconstruct in pot line x 20% = 180 hours.
Extra labour cost to reconstruct in
line: 180 hours x US$ 60 per hour x
100 pots reconstructed per year.
Extra labour cost is US$ 1,080,000.
total production. Assume that 1,000
people are employed at the plant: 1%
= 10 personnel. Cost per person per
year US$ 60 x 40 hours x 52 weeks
x 10 employees = US$ 1,248,000 per
year.
Extra production labour cost per year
is US$ 1,248,000.
Aggregation: US$ 9,478,000 per year
additional income through usefully
employing otherwise wasted resources of electrical power and production
labour.
Conclusion
Plant production labour
paid for but not used
2,520 tonnes lost production = 1% of
Smelters that currently complete pot
reconstruction in the pot lines should
take a close look at this crane. This
article has only touched the surface
of the benefits, focussing on direct
monetary savings. The long-term considerations associated with workers’
health have not been factored in.
Disclaimer
A study of the smelter’s pot room
structure would need to be carried
out to verify its compatibility with
the installation and operation of the
new crane.
Author
Dan Madden is the Managing Director of
Holcan Constructions. He has been associated with the primar smelting industry
for over 30 years.
Hydraulic pressing
of prebaked anodes for aluminium smelters
A. Kaiser, Wecke
There have been very few direct comparisons between vibrated and pressed
anodes [4]. Several production plants
operate both hydraulic presses and
vibrocompactors, but produce different types of anodes with each forming
process. The few available data can be
40
summarized as follows: pressed and
vibrated anodes show similar average values, e. g. comparable apparent
density levels (green and baked). On
average, pressed anodes (shaped on
‘old’ hydraulic presses) have lower
air permeability, whereas vibrated
anodes show better specific electrical
resistance and strength values. The
new Laeis pressing concept [5] over-
comes these disadvantages in electrical resistance and strength, while
maintaining the advantages.
The new Laeis hydraulic
vacuum press for anodes
Dosing and weighing unit: The cooling
mixer continuously discharges conditioned and homogenized paste into a
Illustrations: Laeis
Even though vibrating compaction has long been the most common means of forming prebaked
anodes, many plants worldwide
still use hydraulic pressing. Improvements in hydraulic pressing
technology are now available for
prebaked anode production and
may lead to a revival of this well
proven, but temporarily unfashionable technology. Laeis, a world
leading supplier of high performance hydraulic presses [1,2] originally developed these improvements for other applications. The
new anode forming concept uses a
hydraulic vacuum press [3] and offers advantages in process productivity and flexibility, as well as in
anode quality and environmental
impact.
Fig. 1: Schematic drawing of different pressing principles
left: bilateral pressing, middle: HPF pressing principle, right: unilateral pressing
ALUMINIUM · 1-2/2008
S
E ICN II UAML S M E L T I N G
A LP
UM
dosing unit; this feeds a weighing bin
which measures the paste needed for
the next pressing stroke. The dosing
and weighing unit maintains an overall dosing accuracy of ±5 kg and can
Parameter
Pressing force max.
Useful die surface max.
Filling depth max.
Time per stroke min.
Throughput capacity (1 or 2 cavities)
Height accuracy
Vacuum
Pressing temperature (approx.)
Noise level
Mould changing time
INDUSTR
TM
Y S & ALUMINIUM INDIA 2008
work with cycle times of about one
minute. It can be designed as single
or as a twin unit to be used for 1-cavity respectively 2-cavity moulds, depending on the size of the anodes to
Unit
Value
kN
t
mm x mm
mm
min
pcs/h
mm
mbar
°C
dBA
h
16,000
1,600
1200 x 1800
1200
≥1
≥ 60/120
±2
< 100
110-130
≤ 76
≤1
Table 1: Performance data of hydraulic anode press MEGA 1600 AV
Fig. 2: Influence of vertical density distribution in a pressed product
Fig. 3: Main menu of ProVi press control showing the graphic orientation of the
machine/operator interface
ALUMINIUM
· 1-2/2008
41
be pressed. A reversible conveyor allows scrap paste to be discharged (e. g.
during start up of the process) without
it going through the weighing system
and the press.
Hydraulic vacuum press: A high
performance hydraulic press type
MEGA 1600 AV is used for the shaping of the anodes. It belongs to the well
known Laeis HPF press series with the
so-called ‘active mould’ movement
which has been proven as state-of-theart presses in the refractory industry
for many years. Together with a very
flexible control system, the HPF pressing principle (Figs. 1 and 2) provides
the advantages of a bilateral pressing
system (optimum densification and
controlled density distribution over
the height of the anode), but avoids
the traditional disadvantages of such
presses (deep pits up to 6 m necessary,
high costs for foundation works).
The MEGA 1600 AV with a pressing force of 16,000 kN (1,600 t) has
been specifically adapted for the
production of prebaked anodes. For
instance, it features an extended die
surface area for pressing anodes up
to about 1700 mm long, about 1200
mm wide and maximum 1200 mm
deep, so as to form anodes of practically all dimensions used today. The
mould design allows direct pressing
of stub holes for rodding of the anodes. A special mould filling device
ensures homogeneous filling of the
pre-weighed paste into the mould (1
or 2 cavities) and a vacuum system
evacuates air from the mould before
compaction. A special mould changing device is available which can complete a mould change in less than one
hour. The main performance data of
the MEGA 1600 AV press are summarized in Table 1.
Press control: The flexible press
control system allows a fully automated and safe plant operation. It also collects and stores comprehensive data,
and it provides for comfortable evaluation using standard software for individual data processing. The operator
interface has a clear and easy-to-understand structure designed around
Windows technology with mainly
graphic display (Fig. 3). When anodes
are pressed, the press continuously
monitors the height of each an- ©
ALUMINIUM · 1-2/2008
41
A L U M I N I U M S M E LT I N G I N D U S T R Y
Fig. 4: Pressing regime for pressing to nominal anode height
ode and the applied pressure.
Different pressing regimes can be
selected, but for the production of
anodes the standard mode is ‘pressing to nominal height’ (Fig. 4). Many
individual pressing parameters can be
set and/or changed in order to optimize the pressing sequence and the
resulting anode properties. Table 2
shows some of these parameters and
their main effects. The control system
additionally provides communication
links with external systems, such as
upstream and downstream plant components as well as host computer.
These links can be used in many different ways, such as for plant operation supervision as well as for quality
control, documentation and statistical
evaluation.
Advantages of hydraulic
pressing of anodes
Plant productivity and flexibility:
One of the most important features of
the hydraulic press MEGA 1600 AV
is its high production capacity of up
to 60 or 120 anodes/h (1- or 2-cav-
ity mould) in a single line. For most
anode sizes it can form up to 50 t/h
or even more. Two additional factors
contribute to the plant’s exceptionally
high performance:
• The press needs only short downtimes for maintenance, thanks to
its heavy duty design and to the
reliable pressing technology (no
vibration). Typically two weeks
downtime suffice per year for
preventive inspection and
maintenance.
• Mould changes take only a very
short time. The special mould
changing device ‘Hydrofast’
performs a complete change of
the mould within less than one
hour. This is especially important
for anode producers who supply
anodes of various formats and
sizes to different customers and
who therefore frequently need
to change the mould.
Product quality: An important feature
of hydraulic presses in general, and of
the HPF presses in particular, is the
extreme dimensional accuracy which
they can achieve. Despite the relative-
Parameter
Charger moving speed
Charger movement
Mould moving speed during filling
Plunger speed (multiple adjustable)
Mould frame movement relative to plunger movement
Vacuum application (time, duration, final vacuum)
Pressing speed(s)
Pressure increase speed limitation
High pressure holding time, pressure relief
Anode ejection (with or without load; load weight)
ly large height of the typical anodes
and the corresponding long densification stroke of the press plunger,
these presses guarantee a deviation
in anodes height of less than ±2 mm.
The special HPF pressing principle,
together with the vacuum pressing
technology, provides optimum densification and even density distribution within the anode. Pressing under
vacuum can be expected to lead to
several advantages such as:
• Higher green density of the
anodes
• Higher green strength of the
anodes, which can be pressed
and handled at higher temperatures than when pressing
without vacuum
• Lower electrical resistance, which
is aggravated by entrapped air
• Less density variation in vertical
direction within the anodes.
In general, hydraulic presses can form
anodes at much lower temperatures
than can vibrocompacting (typically
30 to 40 K lower). This again contributes to a higher strength and dimensional stability of the green anodes
Effect
Cycle time; homogeneity of mould cavity filling
Complete discharge of paste batch into mould cavity
Cycle time; even cavity filling
Cycle time; paste densification; density distribution
Paste densification; density distribution
Cycle time; paste densification
Cycle time; paste densification
Cycle time; paste densification
Cycle time; paste densification; anode back expansion
Cycle time; anode back expansion
Table 2: Press control parameters to be set and/or changed by the operator
42
ALUMINIUM · 1-2/2008
S
E ICN II UAML S M E L T I N G
A LP
UM
(no bulging) and avoids the need for
additional water cooling of the anodes
after forming.
Environmental impact reduction:
The low forming temperature reduces the environmental impact of anode
manufacture in several ways:
• As mentioned above, anodes need
no water cooling, thus saving
direct investment costs and
running costs, but also reducing
water consumption and avoiding
contamination of cooling water
• There is less emission of volatile
pitch components (especially
PAHs) from the forming area, thus
improving the working environment. Exhaust connections at all
critical points minimize air pollution and can be combined with
existing air cleaning systems.
Another remarkable contribution to
environmental impact reduction and
labour comfort is the low noise level
of the MEGA 1600 AV with ≤ 76 dBA.
INDUSTR
TM
Y S & ALUMINIUM INDIA 2008
Summary
A new hydraulic pressing concept for
anodes has been developed with the
Laeis hydraulic vacuum press MEGA
1600 AV. It is based on state-of-the-art
pressing technology with matching
plant components for paste cooling
and conditioning, dosing and weighing units as well as for other peripheral equipment.
This press can produce highest
quality anodes of all sizes required
today, and has an unmatched production capacity of up to 50 t/h or higher
in a single line. A high plant availability, together with low maintenance
costs and reduced environmental impact, make this technology attractive
for anode producers.
modern pressing technology; Preprints
49. Internat. Colloquium on Refractories
(2006), 223–226.
[2] R. Lutz: Use of closed loop controls in
hydraulic press forming of ceramic products to obtain highest dimensional accuracy; Stahl und Eisen Special, Refractories
in Steelmaking, 47. Internat. Colloquium
on Refractories (2004), 222–224.
[3] W. K. Fischer and M. W. Meier: Advances in Anode Forming; Light Metals
(1999), ed. C. E. Eckert (TMS, Warrendale,
Pa), 541-546.
[4] K. L. Hulse: Anode Manufacture – Raw
Materials, Formulation and Processing
Parameters, Ph. D. Thesis, R&D Carbon
Ltd., (2000).
[5] A. Kaiser: Hydraulic pressing promises
better anodes, Part I, Aluminium 80 (2004)
3, 192-198, Part II: Aluminium 80 (2004)
4, 276-281.
Author
References
[1] R. Kremer and R. Lutz: Quality improvement of shaped refractories by
Dr. Alfred Kaiser is Manager Business
Development of LAEIS GmbH, based in
Wecker, Luxembourg.
Visit us at
TMS 2008
Booth #211
ALUMINIUM
· 1-2/2008
43
ALUMINIUM · 1-2/2008
43
A L U M I N I U M S M E LT I N G I N D U S T R Y
Zero fuel baking – the total heat recovery concept
W. Leisenberg, Butzbach
Fuel costs are going up rapidly,
and to protect the environment
emissions of greenhouse gases
must be as low as possible. The
‘Total Heat Recovery Concept’
will be a big step towards meeting these requirements. It will
bring the anode plant and also
the electrolysis to a more efficient
state of thermal energy efficiency,
especially in combination with a
thermal power station.
heat as the anode reaches 1100°C at
the end of the soaking time. In practice we also heat up the baking furnace
structure and the packing material, so
the real baking process needs much
more energy as shown in Fig. 2.
Not all of that stored heat can be
recovered, because the anodes usually are unloaded at a temperature of
about 200°C. Therefore some residual
heat is left in the anodes, in the refractory and in the packing coke, as
shown in Fig. 3.
The greenhouse gas situation
Baking furnace heat balance
Today open pit horizontal flue ring
Illustrations: innovatherm
Since the anode is the biggest source
of CO2 evolved from the smelter, great
efforts have been made to replace the
carbon anode by non-consumable
electrodes, but without significant impact so far. But is the carbon anode
technology really such a bad technology with regard to the environment?
The most electrical energy world-wide
is generated from fossil fuels in thermal
power stations. The energy efficiency
of this conversion process is below 50
percent. By contrast, the chemical efficiency of the carbon anode in HallHéroult electrolysis is 60 percent. If
we need to use fossil fuel anyway, why
not use it with such a high efficiency as
has the carbon anode in the smelter?
Finally, compared to non-consumable
electrodes, the overall greenhouse gas
mass balance for carbon anodes suggests that no other technology shows
a higher efficiency.
This technology includes a most
efficient use of fuel for calcining of the
carbon anodes; and there is a really
considerable potential left for heat
recovery.
furnaces are used for anode baking.
The principle of the ring furnace is
to internally recycle some of the heat
stored in the cooling area. In terms of
heat flow, the ring furnace consists of
two convection heat exchangers with
a firing zone between. In the first heat
exchange process, cold air is blown
into the cooling area and is heated
by hot anodes, packing material and
furnace structure. This air then passes into the firing zone as preheated
combustion air, becomes flue gas,
and further downstream it transfers
the majority of its heat content to the
cold anodes. Fig. 4 shows the heat
balance of a baking furnace typical
Fig. 1: Anode baking heat balance
Fig. 2: Total stored heat
Anode baking heat balance
As shown in Fig. 1, anode baking is
a highly exothermal process. The
quantity of tar pitch fed to the process represents far more energy than is
needed to bake the anode [1].
In theory the baking process as
such requires less than 350 MJ/t of
anode. Most of the energy is stored as
44
Fig. 3: Residual heat
ALUMINIUM · 1-2/2008
S
E ICN II UAML S M E L T I N G
A LP
UM
Fig. 4: Baking furnace heat balance
Fig. 5: Improved furnace design and control
INDUSTR
TM
Y S & ALUMINIUM INDIA 2008
for the situation twenty years ago.
Firstly we can see that little or no
tar pitch burns, so its energy is mostly
lost. The furnace design was not optimized, and so the fuel consumption
was as high as 3300 MJ/t of anode. A
great amount of waste heat – 1900 MJ/
t – blows from the cooling area into
the furnace hall. The heat balance of
the furnace is completed by the various other losses from the furnace.
The end of the 20th century saw
improvements in furnace design,
such that impulse firing technology,
and control of both the firing zone and
preheat area became state-of-the-art.
Due to the higher homogeneity of the
pit temperatures, the peak temperature of the flues could be reduced from
nearly 1300 to less than 1200°C.
This lower peak temperature, together with lower refractory mass of
the furnace structure, led to a lower
stored heat in the cooling area (Fig. 5)
and finally to lower the fuel consumption, down to typically 2400 MJ/t [2].
A further big step in reducing of
fuel consumption was the ‘Complete
Pitch Burn Technology’ introduced by
Innovatherm in the last few years [3].
By using practically all of the energy
in the tar pitch, this technology has
reduced fuel consumption dramatically to a bench mark of 1800 MJ/t
today (Fig. 6).
We see from the Sankey diagram
shown in Fig. 6 that a lot of heat is
still not used. Part of this waste heat
blows from the cooling area into the
furnace hall, creating oppressively
hot ambient temperatures especially
in hot countries.
The other part leaves the furnace
with the flue gas. Since not all the heat
content of the volatiles can be kept in
the baking process, the waste gas temperature is about 100°C higher than
with incomplete pitch burn.
Heat recovery
Fig. 6: Baking process with ‘complete pitch burn’
ALUMINIUM
· 1-2/2008
45
Obviously there is a lot more surplus
heat available from the baking furnace, so two questions arise: how can
we take that heat from the furnace and
where can we use it?
The answer to the ‘where?’ is: coke
heating in the paste plant is the only
major heat sink in the anode ©
ALUMINIUM · 1-2/2008
45
A L U M I N I U M S M E LT I N G I N D U S T R Y
plant. About 200 MJ/t are necessary
to heat the coke to about 150°C, including some heat for supplementary
equipment. Regarding the ‘how?’: if
we look at a simplified Sankey diagram for the baking process, including the fume treatment plant shown
in Fig. 7 we will find that the flue gas
and the waste heat in the cooling area
are the two main heat sources.
A technology to use the heat of the
flue gas in the paste plant has been
proposed by the author earlier [4].
But this concept is hardly accepted
because the paste plant would need
serious modification due to the relatively low temperature of the flue
gases. So the energy now is deleted
in the conditioning tower of the fume
treatment plant (FTP).
The paste plant needs higher gas
temperatures if its technology will
not be changed. As shown in Fig. 5,
the ring furnace recovers some heat
from the cooling area. Another small
part disappears as heat loss due to
radiation, convection and ‘blow-out’
of hot air via leakages, or remains as
residual heat in the anodes, the packing material and the refractory. The
balance heat of 1200 MJ/t blows into
the furnace hall.
In order to create an energy link,
the thermal transfer oil for the paste
plant collects the baking furnace
waste heat from the cooling area. This
thermal transfer oil then serves as a
heat supply for the heating screw and
the kneading/mixing plant.
To realize this recovery technology, firstly one of the two blower ramps
in the cooling area is replaced by an
exhaust ramp. So there is no change
in the number of equipment units on
the furnace or in the investment costs,
as shown in Fig. 8
Further, a second hot air duct, besides the flue gas duct, is installed to
collect the hot air from the cooling
areas of all fires and to direct it to a
heat exchanging unit. Here the hot air
gives its energy to the thermal transfer
oil for the paste plant (Fig. 9). The heat
exchange unit is not subject to corrosion because the hot air from the
cooling area is not contaminated by
any corrosive or acid fumes.
Since the temperature of the air
taken from the cooling area is about
46
Fig. 7: Heat balance including fume treatment
Fig. 8: Cooling area equipment
400°C, it easily provides the thermal
oil temperature of 300°C which the
paste plant needs. This concept supplies all thermal energy required from
the paste plant without changing the
proven paste plant technology. For
start-up operation or to bridge any
temporary lack of heat, a heat generator is placed in the hot air duct. So
the boiler for the thermal transfer oil
in the paste plant, including its stand
by unit, is eliminated completely. The
overall investment costs are kept the
same.
Of course, the hot air, after passing the heat exchanger, can be re-used
for other purposes such as for coke
drying or for building heating in cold
countries.
Total heat recovery concept
A complete heat recovery can be realised in a second step if a thermal
power station is located near to the
smelter.
Every thermal power station heats
water for the boiler to generate steam
for the turbines. The amount of water
required is so large, and the temperature of the fresh water is so low, that
it acts as an ideal heat sink to recover
any remaining heat from the furnace.
Even a portion of the whole amount of
water will suffice to recover all waste
heat of the baking process.
The remaining heat of the hot air
from the cooling area can easily be
extracted by installing a second heat
exchange unit downstream from the
unit for the thermal transfer medium
(Fig. 10).
The water for the power station
can also recover residual heat from
the flue gas. A two-step heat exchange
plant transfers all usable heat to the
water. This cools the flue gas to about
130°C as it enters the fume treatment
ALUMINIUM · 1-2/2008
S
E ICN II UAML S M E L T I N G
A LP
UM
INDUSTR
TM
Y S & ALUMINIUM INDIA 2008
then each recovered Joule saves 11
percent more fuel at the power station respectively at the paste plant.
The equivalent-to-fuel heat recovery
then is nearly 1900 MJ/t, which is
more than what the baking furnace
requires as fuel. This means that the
baking process, including all losses, is
virtually fed by tar pitch only and can
be considered to run at zero fuel. This
concept will set a new benchmark
for the fuel efficiency in aluminium
smelters.
Summary
Fig. 9: Coke heating by hot air from cooling area
With the ‘Total Heat Recovery Concept’ technology considered in this
paper, the fuel efficiency of the anode
baking process can be brought very
close to the theoretical limit of running at zero fuel. All equipment which
is necessary for this concept is proven
and available today.
References
[1] B. J. Racunas: Anode baking furnace
thermal balance, Light Metals 1980, ed.
H.O. Bohner (TMS, Warrendale, Pa).
[2] Alcan/AP, Inst. Paul Heroult: Anodes
Baking, AN 3 5 CAEN V3, 2004.
[3] W. Leisenberg: Firing and control technology for complete pitch burn and its
consequences for anode quality, energy
efficiency and fume treatment plant, 9th
Intl Conf. on Non Ferrous Metals, July 8-9,
2005, Pune.
[4] D. Maiwald and W. Leisenberg: The
development of anode baking technology
from past to future, Light Metals 2007, ed.
M. Sørlie (TMS, Warrendale, Pa), pp. 947952.
Fig. 10: ‘Total Heat Recovery Concept’
plant. A lower flue gas temperature is
undesirable because acid components
would condense at the dew point of
the waste gas. As a side effect, the flue
gas temperature will be kept constant
ALUMINIUM
· 1-2/2008
47
and so minimise the demand of water
in the conditioning.
If we assume about 90 percent efficient heat transfer to the boilers in the
power station and in the paste plant,
Author
Prof. Dr. Wolfgang Leisenberg is Director of innovatherm Prof. Dr. Leisenberg
GmbH u. Co. KG, Butzbach, Germany.
ALUMINIUM · 1-2/2008
47
A L U M I N I U M S M E LT I N G I N D U S T R Y
Best available technology
for the fume treatment of anode production plants
M. Hagen, B. Schricker; Goldkronach
The new IPPC regulation [1] as
well as local legislation force aluminium manufacturers to improve
their air emission control systems.
Furthermore a critical neighbourhood puts pressure on plant managers to think about the future of
their plant.
Type of emissions
In order to design an appropriate fume
treatment system we need to know the
type and amount of pollutants. The
two main processes which generate
air emissions from anode production
plants are: paste production and baking. Even if the rough numbers seem
to be equal, there are huge differences
in emissions from paste plants compared to baking furnaces. The reason
is mainly the different temperature
at which the fumes are generated.
The most important factors for paste
plants are:
• Type of mixer
• Type of cooler and amount of
cooling water/temperature
• Mass of produced paste
• Additional connected sources.
The most important factors for baking
furnaces are:
• Type of furnace (open or closed
type baking)
• Production cycle and output
• Type of fuel and firing system
• Raw materials for anodes (e. g. HF
due to re-use of butts; SOx due to
sulphur content 0.5 to 4%).
Table 1 (next page) shows the range of
possible emissions at furnaces without a fume treatment.
In particular the polycyclic aromatic hydrocarbons (PAHs) are critical target substances for the design of a RTO,
especially those PAHs which consist of
more than two benzoic rings.
Depending on the temperature
they can appear as volatile gases or
as condensed particles. Fig. 1 shows
an example analysis of PAH- ©
Illustrations: LTB
Aluminium production plants have
several sources of emissions. Dust
emissions are trapped using bag
house filters for many years. For the
additional adsorption of HF, recycled
from the electrolysis cells, these filters have been equipped with alumina
injection. All these systems are stateof-the-art and are accepted as ‘best
available technology’.
Based on this favourable experience, companies often copied these
fume treatment systems for the abatement of particulate pitch and tar fumes
coming from the baking furnace and
from paste production. But the pitch
and tar at high temperatures also generates other volatile emissions, which
potline filters cannot treat. These fumes
contain a mix of odorous and carcinogenic substances, known as polycyclic
aromatic hydrocarbons (PAH).
For these volatile compounds, as
well as for condensed particulates, a
fume treatment system based on regenerative thermal oxidation (RTO) is
the ‘best available technology’ according to the IPPC. The aim of LTB was to
create an abatement system, capable
of fulfilling the emission control levels
even in the long term. During three
years of testing with a small plant and
of running a full scale pilot unit LTB
created a specific ‘Carbon design’RTO. In order to explain the details
of this special design this article will
again present the basic principles of
RTO.
Fig. 1: Composition of PAH emission from a baking furnace (example)
48
ALUMINIUM · 1-2/2008
A L U M I N I U M S M E LT I N G I N D U S T R Y
Anode specific
flue gas volume
CO
Total carbon
Tar/condensates
PAH
Soot/dust
SOx
HF
open type close type
furnace
furnace
5,000
3,500
m3/t
mg/Nm3
mg/Nm3
mg/Nm3
mg/Nm3
mg/Nm3
mg/Nm3
mg/Nm3
< 1,200
< 1,500
100-300
< 1000
200-400 800-1,200
20-200
40-500
100-200
50-100
100-800 100-800
5-300
5-300
Tab. 1: Typical gross emissions during anode baking [1]
containing flue gas containing various
amounts of particulate and gaseous
matter (PAH listed with increasing
boiling point from left to right).
A typical example in the middle of
the PAH list is benzo(a)pyrene, which
has five rings, a molecular weight of
252 and a boiling point of 496°C. As
Fig. 1 shows, the substances with a
lower molecular weight are mostly
gaseous under the conditions of a furnace. Therefore a large part of them
will burn already in the furnace (especially in the open type furnace). With
increasing boiling temperature, most
of the PAH appear solid or condensed
(Fig. 1).
Historical background
and state-of-the-art technology
To trap particle emissions, electrostatic precipitators (ESP) have often
been used. To improve the efficiency
of these ESP in trapping condensed
tars, lots of them have been equipped
with an upstream cooler. Based on
stricter limits for the total carbon emissions imposed during the late 1980s,
new systems have been developed [3].
Their design was similar to the fume
Fig. 2: LTB RTO test plant [2]
treatment centres of the electrolysis
pots, using a dry scrubbing process
with alumina as an ab- and adsorbent to eliminate the particulate pollutants.
Due to complaints from neighbours and to stricter emission limits,
in the 1990s volatile compounds and
odour started to get more and more
critical attention. In Europe an increasing number of countries reduced
the legal limits for polycyclic aromatic hydrocarbons (PAH) especially
benzo(a)pyrene, which is supposed
to be carcinogenic. The only known
technology to reduce these PAH, as
well as total carbon, below the required limits is a thermal oxidation.
Ideally this thermal oxidation plant
is equipped with a regenerative heat
exchanger so as to recover most of the
energy the process requires.
Already in 1994 the German Environmental Protection Agency started
a test plant in Germany to reduce PAH
emissions downstream of an electro-
static filter [4]. In the late 1990s a
German company entered the market
with an RTO system. Two plants were
built but had huge problems due to
clogging of the valve system.
Since 2005 a combination of prefilter, RTO and packed bed filter (for HF
adsorption) treats the emissions of an
open type furnace in the Netherlands.
In 2004 LTB started to operate a
test plant in the bypass of a closed
type baking furnace. Closed furnaces
generally produce very concentrated
emissions compared to open type furnaces (see Table 1).
The target of the test runs was to
check the basic cleaning efficiency
and to find an appropriate design for
the valve system. As the valve system
is an essential component of a low
emission system, it has to work reliably even under the heavy pollutant
load coming from a baking furnace.
The tests showed that the destruction of total carbon in the RTO is not
a problem at sufficient burning tem-
Fig. 3 and 4: Redundant prefilter system
50
ALUMINIUM · 1-2/2008
S
AML S M E L T I N G
A LPU E
M ICN II U
I N D U S TTRMYS & A L U M I N I U M I N D I A 2 0 0 8
Fig. 6: Ceramics before bake out
Fig. 5: 4-chamber RTO for continuous burn-out with separate burn-out fan
peratures (Fig. 3). But the tests also
showed that the almost complete
destruction of the PAH is a very ambitious task. The test plant reached
a cleaning efficiency of single PAH
compounds between 88 and 98%, depending on the concentration and the
type of PAH. But a pre-cleaning filter
is necessary to increase the overall efficiency above 97%.
This can be done, for example,
with a fixed bed filter which collects
the condensed PAH fraction. As this
filter will accumulate condensables
and tar, it has to be cleaned periodically. Therefore two redundant fixed
bed filters have to be installed to enable continuous operation by cleaning
the fume gases in one filter during purification of the other prefilter (Figs.
3 and 4). An alternative filter could
be an electrostatic precipitator (ESP),
which often already exists at anode
production plants.
An opposite approach is to increase
the temperature of the flue gases entering the RTO by changing the burn-
Fig. 8: Valve box design
ALUMINIUM
· 1-2/2008
51
ing curve or even by adding a heater.
As tests from LTB prove, this will only
lead to increased energy consumption
but not to a significant reduction of
the PAH load. The reason is the very
high boiling temperature of many
PAHs which usually is much hotter
than the flue gas temperature of the
furnace, and so cannot be reached
with only a moderate increase of the
flue gas temperature.
For this special kind of flue gas
composition (Fig. 1) LTB therefore
has focused on the development of
a highly efficient pre-filter system in
combination with an optimized burnout mode.
Current LTB developments
During operation of a conventional
RTO-plant, tar and other high-boiling
hydrocarbons, tend to deposit and accumulate on the inner valvebox walls
and on the inlet surface of the ceramic
heat exchanger blocks (Fig. 6). This
condensate compromises cleaning
Fig. 7: Ceramics after bake out
efficiency in two ways: the pressure
drop of the plant increases, and the
higher gas velocity will partially strip
off precipitated tar from the valveboxwalls so that part of the PAH fraction
may get back into the clean gas.
In order to keep the cleaning efficiency at a high level, a periodical cleaning of the tar coated parts
is therefore necessary, the so called
burn-out mode.
In the burn-out mode, a separate
burn-out fan sucks hot burning chamber gases down through the ceramics.
The condensates, as well as included
un-burnable particles, start to liquefy
and to drop into the bottom discharge
cone (drop-out mode). This condensed
tar will include around 10% ash and
other inert compounds. So most of the
non-combustibles, dust and ash will be
removed from the system. By further
increasing the temperature up ©
Fig. 9: RTO during erection
ALUMINIUM · 1-2/2008
51
A L U M I N I U M S M E LT I N G I N D U S T R Y
Fig. 10: RTO with collecting ductwork and prefilter
to a maximum of 550°C, it is possible
to gasify all condensed hydrocarbons.
These gases have a high calorific value
and they can therefore be re-used as a
fuel in the burning chamber. For this
purpose special tar burners are installed. The result is a clean surface of
the heat exchange blocks (Fig. 7).
In any case, an upward airflow
design from the bottom of the ceramics up to the burning chamber should
be avoided because this would only
lead to a complete infiltration of the
ceramic heat exchanger media.
At very high tar loads in the flue gas,
it becomes necessary to run the burnout mode continuously and independently from the normal three-chamber
operation. In this special case a fourth
chamber is added to the RTO (Fig. 5).
This allows a normal three-chamber
operation while there is always one
chamber in burn-out mode.
In order to reach the required low
emission limits, the valves of a RTO are
the most important parts. If they are
not tight enough, the resulting leakage will allow some flue gases to pass
directly to the clean gas duct without
passing the burning chamber. For this
difficult application the standard design of the valve system was adapted
by LTB. Especially during the
drop-out mode, condensates drop
down
Fig. 12: Layout with furnace
52
Fig. 11: LTB HF absorbers
from the ceramic bed into the valve
box. In order to avoid clogging of the
valves, the complete valve-box has
been re-designed (see Figs. 8 and 9).
The valves have been placed outside the dropping area so as to keep
them and the sealing clean. All dropping condensates are collected in the
heated cone below, from where they
can be discharged easily.
However, normal ‘poppet’ valves
or rotary systems would fail for technical design reasons, especially at the
influence of high temperatures caused
by the burn-out mode.
As a final stage of the plant, a HF treatment system could be added (Fig. 12).
As wet scrubbing systems would create waste water from this application,
a dry packed bed scrubber is preferred. This technology was developed by LTB in the 1980s and is used
in several installations of the ceramic
industry (Fig. 11). Inside the casing
there are several cascades, filled with
grainy limestone. These absorption
zones ensure a good contact of the HF
with the absorbent, which will react
spontaneously to fluoride (CaF2).
References
Experience and results
In the experience of LTB, the RTObased type of flue gas cleaning is the
only system which can reach the
required low limits for volatile compounds under the hard conditions at
baking furnaces. This experience is
also used in green anode plants which
run modified versions of the RTO.
With the special carbon-design of the
RTO, LTB achieved more than 97%
cleaning efficiency for PAH and more
than 98% related to benzo-a-pyrene,
respectively.
Nevertheless, the required PAH
limits
are
quite
low
and
hard
to
reach.
Therefore
additional,
new methods
of prefiltering
and post-treating
the clean gases are being tested to further reduce
the emissions. The results will be
presented later in a separate article.
[1] Reference Document on Best Available
Technology in the non ferrous metals industry, May 2000, European IPPC Bureau,
Sevilla http://eippcb.irc.es.
[2] M. Hagen: New requirements and solutions for the fume treatment at paste mixing and anode baking plants; Light Metals
2006, ed. T. J. Galloway (TMS, Warrendale,
Pa), 615-619.
[3] Procedair leaflet air pollution control
12/99.
[4] W. Hammer et al.: UBA-FB AP 2058;
Verminderung von PAH-Emissionen
durch Errichtung und Betrieb einer thermischen Nachverbrennung mit Wärmerückgewinnung für Ringöfen zur Herstellung von Elektrographit; SGL Carbon
GmbH; August 1994.
[5] M. Hagen, W. Hilgert and R. Skiba:
Results of operating a RTO based fume
treatment system at a baking furnace; Light
Metals 2007, ed. M. Sørlie (TMS, Warrendale, Pa), 977-980.
Authors
Dipl.- Ing. (FH) Matthias Hagen has been
working for LTB for 20 years and is responsible for all sales.
Dr.- Ing. Bernd Schricker at LTB is responsible for process design and new developments.
ALUMINIUM · 1-2/2008
S
AML S M E L T I N G
A LPU E
M ICN II U
ALUMINIUM
· 1-2/2008
53
I N D U S TTRMYS & A L U M I N I U M I N D I A 2 0 0 8
ALUMINIUM · 1-2/2008
53
A L U M I N I U M S M E LT I N G I N D U S T R Y
New generation
of FLSmidth Möller direct pot feeding system
C. Duwe, Pinneberg; T. Letz, Dubai
General description
The secondary oxide (fluorinated alumina) from the gas treatment centres
(GTC) is stored in silos near the GTC.
This fluorinated alumina is then taken from the silos and transported di-
rectly by the direct
pot feeding system
to each of the electrolytic cells. This
transport system
is pneumatic and it
continuously feeds
the
fluorinated
alumina to each
of the electrolytic Fig. 1: Process flow diagram for the new generation of Möller
cells. The direct direct pot feeding system
pot feeding system
works independently of the potroom
centre and transported to the main
cranes; it is fully automatic and abintermediate bins, normally one main
solutely tight. This design minimises
intermediate bin for each half of a pot
maintenance work as well as the
room.
quantity of spare parts needed.
More MF slide pipes transport
the alumina to the main intermediate
bins (near the potroom walls) as well
Functional description
as along the two potroom walls. The
main MF pipe air slide DN 300 along
The new generation of Möller direct
the potroom feeds distribution bins.
pot feeding (DPF) is no longer a dense
Each of these bins feeds two electrolphase conveying system with pressure
ysis cells via fluidflow super feeding
vessel for the long distance transport
system pipes DN 100.
combined with super feeding system
All necessary venting domes are
pipe air slide for conveying to each
connected
with the gas duct.
of the electrolytic cells. The new DPF
The
fluidflow
DPF system works
system consists of 100 percent Möller
fully
automatically
and is more or
fluidflow (MF) pipe air slides DN 100
less
100
percent
filled
with alumina
– 300 to avoid scaling-effects, attrition
all
the
time.
(generation of fines) and segregation.
The fluorinated alumina is taken
Customers often have different refrom the silo at the gas treatment
quirements as regards access to crust
breakers and to dosing devices, and the
options for removing alumina ore bunkers during potline operation. These
requirements influence the final design
of the MF super feeding system pipe
DN 100 on top of the electrolyte cell.
When the bunker of an electrolysis cell is full, the bulk material cone
Fig. 2: Fluorinated alumina silo, Möller fluidflow (MF) pipe air slide to potroom wall, main
intermediate bin, fluidflow pipe air slide along the potroom
54
Illustrations: FLSmidth Möller
Aluminium has become more important for many industries and branches
in the last 20 years. Primary aluminium is produced in so-called electrolytic cells in aluminium smelter
potlines. In the past, large pot room
cranes fed these electrolytic cells with
the following disadvantages:
• Non-continuous feeding of the
electrolytic cells
• Dust emission when refilling the
alumina bunkers on the pots
• Significant loss of alumina during
filling
• Considerable crane capacity
needed
• Extra man-power needed
• Fluctuating electrolyte composition causes polluting anode effects
• Anode effects reduce the efficiency
of the smelting process
• High investment and maintenance
costs for the potroom cranes.
Because of this, Möller developed a
direct pot feeding system.
Fig. 3: Möller distribution bin
ALUMINIUM · 1-2/2008
S
AML S M E L T I N G
A LPU E
M ICN II U
I N D U S TTRMYS & A L U M I N I U M I N D I A 2 0 0 8
• No generation of fine particles
The self-closing filling
• No segregation
spout due to the mate• No scaling
rial cone level in the ore
• Lowest possible (over) pressure
bunker of an electrolytic
• No pressure-tight sealing of the
cell allows a self-regulatelectrolyte cell
ing and continuous re• Minimized energy consumption
filling of the ore bunkers
• Minimized maintenance work.
during operation of the
The fluidisation air for the MF pipe is
smelting plant. The selfsupplied by rotary piston blowers. The
closed filling spout and
fluidisation air for the MF super feedthe filling process of the
ing system on top of the electrolysis
ore
bunker
are
shown
in
Fig. 4: Various designs of MF super feeding system (SFS)
pipe DN 100 on top of the electrolysis cell
cells comes from frequency-controlFig. 6 (see next page).
led rotary piston blowers in order to
Furthermore, the sysreduce the energy consumption down
tem
needs
no
pressure-tight
sealing
of
level blocks the filling spout discharge
to that needed for the air actually ©
the
electrolysis
cell
thanks
to
the
low
opening of the MF air slide pipe, and
(over)
pressure
in
the
so the flow of alumina stops autoMF air slide pipe.
matically. As fluorinated alumina is
The main advanremoved from the ore bunker of the
tages
of the new genelectrolytic cell, the level drops and
eration
of MF direct pot
the pneumatic transport starts again
feeding
system are:
automatically, ensuring a constant
•
Self-regulating
and
and reliable mass feed rate to the pots.
continuous
feeding
of
Fluidising of the fluorinated alumina
ore
bunkers
inside the MF air slide pipe works
• Absolutely dust-free
permanently to ensure a constant
operation
bulk density.
Fig. 5: SFS pipe DN 100 on top of the electrolysis cell
BUSS Anode Technology
we engineer your plant!
you at
…see
008
TMS 2rleans
New O
13
h 09 –
from conceptual stage to realization
Hohenrainstrasse 10; CH- 4133 Pratteln 1; Switzerland
+41 (0) 618 256 462; [email protected]; www.buss-ct.com
Marc
1
No. 63
Booth
A L U M I N I U M S M E LT I N G I N D U S T R Y
used. The technical design data and requirements
for direct pot feeding systems tend to be very similar but vary depending on the local conditions. The
data below are from a smelter plant in Siberia.
Conclusion
Fig. 6: Self-closed filling spout and filling process of the ore bunker
Technical Data (example)
Location of erection:
Russia
Altitude of plant location:
367 m above sea level
Ambient temperature:
min. -50°C, max. 36°C
Conveyed material:
Al2O3 (fluorinated alumina)
Bulk density:
0.95 – 1,05 t/m3
Particle size distribution:
100% < 200 μm
90% < 125 μm
up to 15% < 45 μm
Material temperature:
30°C to 60°C
Moisture content:
< 0,5 weight % moisture content
(during summer months < 0,6 weight %)
Material characteristics:
free flowing, not adhesive,
fluidisable with 1-2 m3/min/m3
Number of potlines:
2
Number of potrooms:
4
Number of CAD units:
4
Number of cells:
672 (4 CAD with 168 cells)
Design conveying capacity:
250 kg/h (each cell)
Fluidisation air for
4 x 1 group of 3 blowers (2 duty, 1 stand-by)
fluidflow:
frequency controlled
Fluidisation air for
4 x 1 group of 3 blowers (2 duty, 1 stand-by)
SFS pipe air slides:
frequency controlled
The new generation of Möller fluidflow direct pot
feeding system has been ordered for Dubai potline
6b (40 electrolysis cells), Hormozal Smelter (228
electrolyte cells) as well as for Taishet Smelter (672
electrolyte cells) and Boguchansky Smelter (672
electrolyte cells).
This system is designed to ensure the most constant and reliable feed possible from the ore bunkers into the electrolysis cell.
Lowest possible conveying velocities preserve the
particle size distribution and the flow ability of the
secondary alumina and so avoiding scaling effects.
This most competitive system is superior also by
minimizing wear and maintenance as well as energy
consumption and last but not least by high operating reliability.
The successful story of the company’s direct pot
feeding will continue with this new technology,
started at Hamburger Aluminium Werk in 1997 and
at Aluminij Mostar in 2001.
Authors
Dipl.-Ing. Carsten Duwe is Head of Technical Department
of FLSmidth Möller, based in Pinneberg, Germany.
Dipl.-Ing. Timo Letz is Senior Engineer Sales and Project
Department of FLSmidth Middle East, Dubai.
Metal treatment update
B. Maltais, D. Privé and M.-A. Thibault; Chicoutimi
At the TMS annual conference in
2002, an interesting and timely
paper (A Technical Perspective on
Molten Aluminium Processing)
was presented, in which the author
described the quality requirements
for aluminium and its alloys. In
particular, he stated that only
“step-wise improvements to quality / productivity / capacity are anticipated”. During the last six years
following this presentation, there
has indeed been a “step-wise” improvement in metal treatment.
For example, once metal is siphoned
from pots in the pot room, then the
56
prevention of potline bath carry-over
is an ongoing battle. A new detection
method was presented at the recent
Australian Cast House Conference, in
which the presence of bath is automatically signalled thus alerting the
operators to take preventive action.
Automated skimmers are being installed in many plants to ensure that
any bath carry over is removed prior
to transport to the casthouse or to the
treatment of aluminium in crucible
(TAC) station, for which several new
designs have been recently implemented. TAC stations eliminate the
need for sodium removal downstream
in the cast house.
More and more plants are turning to
siphoning from the pot crucibles into
the casting furnaces. This approach
is particularly recommended when a
new furnace is being installed so that
the design criteria can be easily met.
In older plants, there are often height
limitations or restrictions for access
into the furnace for the siphon tube.
Siphoning reduces metal turbulence
and hence minimizes dross generation.
To meet the ongoing requirement
to reduce chlorine gas in plants, the
use of either manual additions of salts
in the casting furnaces or automated
rotary flux injectors was developed.
ALUMINIUM · 1-2/2008
I N D U S TTRMYS & A L U M I N I U M I N D I A 2 0 0 8
Illustrations: STAS
S
AML S M E L T I N G
A LPU E
M ICN II U
Fig. 1: TAC and automatic skimming unit
It is now clearly demonstrated and
well established that alkali and inclusion removal is possible without using
chlorine gas. The salts used for this
application contain magnesium and
potassium chloride with compositions using less magnesium chloride
yet attaining equivalent removal efficiencies.
In a continuing effort to reduce
chlorine usage, new procedures have
shown that additions of chlorine to
a limited number of rotors in a multi-stage degasser can be more effective in reducing inclusions. Moreover,
chlorine usage can be completely
eliminated from degassers when salt
additions are made to optimize inclusion removal.
Technologies for metal treatment
Automatic skimming machine: Most
producers in the past removed bath
material manually, exposing the operators to safety and hygiene risks
while still not efficiently removing
bath. Now, automatic skimming machines are available on the market,
adapted to specific customer needs,
ALUMINIUM
· 1-2/2008
57
Fig. 2: Efficiencies observed with use of TAC
and to the particular transport modes
in the plant. Many new designs now
available are equipped with a tool especially designed to remove the maximum of solid bath and dross from the
metal surface. In fact, the skimming
efficiency of this machine can be up
to 85 percent dross / bath removal on
a consistent basis. Moreover, the automatic skimming machine does not
require an operator.
Treatment of aluminium in a crucible: The TAC technology injects of
aluminium fluoride directly into the
crucible to effectively remove the alkali and alkaline earth metals from
molten aluminium without using
chlorine gas.
Prior to the TAC operation, the
bath material has to be removed. An
automatic skimming machine can be
integrated with the TAC station to remove this bath material, and can also
reduce labour costs and safety and
hygiene problems. If required, the
skimmer can be used again to remove
dross after the TAC operation.
The TAC technology can efficiently achieve a concentration of sodium
after treatment as low as few ppm
within a treatment time between 5
and 10 minutes, from an initial value
over 100 ppm.
One of the main advantages of the
TAC is that the flux material (aluminium fluoride) is readily available
in the smelter and it can be recycled
to the pots when the crucible walls
are cleaned with a crucible cleaning
machine. Smelter grade AlF3 is suitable. Typically, 1 kg of flux per tonne
of aluminium is used.
Brief description of the equipment:
Figure 1 shows an example of TAC
installations in modern smelters. The
rotation of the TAC agitator is powered by an electric motor coupled to
a gearbox. The rotation speed is in the
range of 100 to 200 rpm. The complete equipment and its installation
are in accordance with EC standard
to ensure a high level of safety for the
operators.
Advantages of the TAC-automatic
skimming equipment: no chlorine
is used; pot room crucible used; extremely rapid (less than 10 minutes);
automatic, PLC operation; integrated
dust collector system; low operating
cost.
©
ALUMINIUM · 1-2/2008
57
A L U M I N I U M S M E LT I N G I N D U S T R Y
Fig. 3: Rotary injector
Rotary fluxing technologies (e. g. RFI/
RGI): In several plants, furnace fluxing is still used to meet product requirements with respect to dissolved
alkalis (lithium, sodium, calcium),
non-metallic inclusions and hydrogen. Furnace fluxing has been traditionally done either manually with a
salt mix or else using static lances with
a mixture of chlorine / nitrogen gases.
These processes have been progressively replaced by rotary injectors using chlorine gas (RGI) or salt mixtures
(RFI).
Alkalines are removed significantly faster with the RFI / RGI rotary
equipment in comparison with lance
fluxing. The RGI still uses a mixture of
chlorine / nitrogen, but it uses much
less chlorine than does conventional
lance fluxing. On the other hand, the
RFI completely replaces chlorine by
salts containing magnesium and potassium chloride.
Fig. 4: Alcan compact degasser
Rotary salt fluxing processes help
achieve high removal efficiencies
within limited process times. However, the main gain is in terms of environment and safety issues.
Brief description of the equipment:
The injection module is composed of a
graphite rotor and shaft, a driving system and a flux feeder. The flux feeder
contains and doses the flux required
for one treatment. The dosing system
allows for the precise distribution of
the flux during a treatment.
The injection module must be
placed at a very specific location into
molten metal. Since each plant and
even each furnace is different, several
designs have been developed to meet
customer requirements. Some equipment can be used to treat one furnace
only, while others can treat two furnaces in sequence. Mobile units have
also been developed to process several furnaces.
Advantages of the RFI equipment:
reduces alkalis, inclusions, HCl and
dust emissions; ensures temperature
and alloy homogeneity by stirring action; eliminates the use of chlorine gas
for furnace fluxing.
Degassing technologies (e. g. ACD):
The aluminium compact degasser
(ACD) is a multi-stage, in-line degassing machine that treats molten aluminium directly in the trough. Several
papers have described this technology
in the past ten years.
Brief description of the equipment:
The ACD is composed of three main
components:
• One or more driving modules:
drive assembly for the graphite
rotors used to inject and disperse
the treatment gases (mixture of
chlorine/argon or argon only)
• A sealed hood: this supports
the drive module(s), encloses the
fumes generated during treatment,
Fig. 5: Conventional versus sealed ACD
58
ALUMINIUM · 1-2/2008
S
AML S M E L T I N G
A LPU E
M ICN II U
I N D U S TTRMYS & A L U M I N I U M I N D I A 2 0 0 8
and shields the metal from ambient
conditions
• A retraction system: lowers and raises the
hood and maintains it at the position
required for maintenance operations.
Control is automatic through the use of a
PLC.
Advantages of the degassing technologies:
removes alkalis and inclusions when chlorine
is used; allows treatment with 2 to 8 rotor systems for metal flow rates from 20 up to 1,500
kg/min for the ACD; avoids loss of metal due
to alloy changes for the ACD; avoids need to
heat unit for the ACD; suits inline salt injection system.
Technology comparison – conventional vs
sealed ACD: In the recent years, the ACD has
been improved to operate under sealed conditions (see Fig. 5 for design changes).
Conventional unit: Conventional ACDs
create forced air circulation through the interior of the hood. This mode of operation
originally served to eliminate dross reactivity
by (burning) after treatment of AlMg alloys.
Sealed unit: The basic principle is to maintain the inside of the ACD hood under argon
atmosphere to exclude oxygen as far as possible. For that purpose, the ACD hood has been
completely redesigned. All means have been
implemented to eliminate air infiltration.
Benefits of sealed ACD: lowers dross generation; allows ACD operation without the
use of chlorine; reduces emission of particulate matter.
In-line salt feeding system: In-line salt injection involves adding of very small amounts
of solid flux underneath the molten aluminium surface. This technology takes advantage of the strong shearing forces developed
around the ACD rotor heads to properly disperse the liquid salt droplets. The solid flux
assists alkali removal and inclusion removal
using commercial fused or non-fused MgCl2/
KCl mixtures.
This approach is an alternative for plants
that want to avoid or eliminate gaseous chlorine injection in in-line degassers. The theory
of alkali and inclusion removal from aluminium by using MgCl2/KCl mixtures is well described in the literature.
Brief description of the equipment: The inline flux feeder takes advantage of the ACD
rotor design to inject solid flux through the
shaft central opening. The flux is then directly
delivered inside the rotating disperser underneath the metal surface. Hence, the liquefied
salt droplets are efficiently dispersed within
the molten metal. This configuration, as for
salt injection, is the key element for the ©
ALUMINIUM
· 1-2/2008
59
59
A L U M I N I U M S M E LT I N G I N D U S T R Y
efficiency of the ACD salt injection
process. Thanks to its patented disperser design, the ACD is among the
few technologies that can offer inline
salt injection.
A more detailed description can be
found in the TMS article presented in
2007.
Metallurgical performances with
different configurations of ACDs
To compare different configurations
in various plants, metallurgical performance tests have been performed,
the results of which are briefly presented below. The ACD configurations are:
• ACD without chlorine
• ACD with chlorine (original
design, where chlorine is injected
through all but one rotor)
• ACD with chlorine (by limiting
the number of rotors for chlorine
injection)
• ACD with salt injection (in replacement of chlorine).
Hydrogen removal: The most important function of an ACD is to remove
dissolved hydrogen from molten aluminium. It is worth mentioning that
using the ACD for hydrogen removal
is equivalent to using a box type degasser. Since the hydrogen escapes
in bubbles of other gases, there is no
difference between using the ACD argon with chlorine, without chlorine or
even with the salt injection system. In
fact, the results depend on the volume
Fig. 6: Salt injection system
60
of gas injected, the efficiency of gas
dispersion, and the residence time of
the gas bubbles in the molten metal.
Using the AlSCAN method to
monitor the results, ACDs have shown
similar degassing efficiency with or
without chlorine. Results based on the
latest improvement using an MgCl2
based salt to replace chlorine have
shown equivalent removal performances in similar process conditions.
Inclusion removal:
Without use of chlorine: Over the
last years, there has been a worldwide
movement toward the elimination of
chlorine from cast houses because of
environmental, hygiene and safety
concerns.
Six years ago, only a few ACDs
were operated without chlorine injection. Inclusion removal was characterised as inconsistent, to say the
least. The dross generated inside the
ACD was found to be much ‘wetter’
without chlorine than with it. In these
conditions, the inclusions can be easily re-entrained into the melt, thus
explaining the low or non existent
inclusion removal.
Nowadays, more than 20 ACDs of
the latest sealed design are in operation using argon only.
However, even with sealed ACDs,
which generate and show no surface
dross, inclusion removal efficiency is
still inconsistent without chlorine. To
achieve consistent inclusion removal,
a modified agent is needed to make
the inclusions less wettable, so that
they stay separate
at the aluminium
surface.
With use of
chlorine: It is well
documented that
consistent inclusion
removal efficiency
through in-line degassing requires a
minimum input of
chlorine.
From the first
development of the
ACD in the early
1990s, chlorine was
injected underneath
the metal surface
through all the rotors but the last one,
which injects argon only. The typical
inclusion removal performance associated with a standard chlorine injection configuration may vary from 25
up to 60 percent. However, it is important to highlight that the higher the
cleanliness of the metal coming from
the furnace, the lower the proportion
of inclusion removal will be.
Recent plant experiments have
shown that limiting the number of
rotors that inject chlorine can help
achieve higher and more consistent inclusion removal efficiencies
(Fig. 7).
Salt Injection: As published at the
last TMS, inclusion removal is more
efficient when salt is used instead of
chlorine (Fig. 8).
Alkali removal: Except for the configuration that uses argon only, alkali
removal is equivalent for all other
configurations (with chlorine or salt
injection), with a removal efficiency
of 40 to 60 percent.
As a comparison, the performance
obtained without injection of a chemically active reactant (argon only) are
also included in the figure. Argon
alone achieved a 20 percent efficiency
of alkali removal since the turbulent
mixing vaporizes sodium into the
bubbles. Indeed, sodium’s high activity coefficient and vapour pressure
favour it removal in the ACD.
Conclusion
To the authors’ knowledge, of a dozen
customers who have installed or demonstrated a strong interest in the TAC
over the six last years, most have coupled their machines with a skimming
machine. The new automatic skimming machines remove bath more
precisely than the manual method,
and they avoid health and safety problems for the operators.
It is worth noting that the use of
the flux injection technology is more
and more an option for smelters and
recycling plants to treat liquid metal
in furnaces. A lower magnesium chloride content in salt flux has proved as
effective as a higher content.
With the ACD, reducing the number
of rotors injecting chlorine has given
similar or even better results in terms
of alkali or inclusion removal.
ALUMINIUM · 1-2/2008
S
AML S M E L T I N G
A LPU E
M ICN II U
I N D U S TTRMYS & A L U M I N I U M I N D I A 2 0 0 8
Finally, as presented at the TMS 2007,
the new salt injection system offers an
improved solution which completely
eliminates chlorine gas from the cast
house.
Acknowledgement
Sincere thanks are due to the Alcan’s
personnel and the STAS design team,
without whose dedication the success
of this work would not have been possible.
Authors
Bruno Maltais, Dominique Privé and
Marc-André Thibault are with STAS Inc.,
based in Chicoutimi, Canada.
Fig. 7: Inclusion removal efficiency
Fig. 8: Inclusion removal efficiency: in-line salt injection
versus chlorine injection
Fig. 9: Alkali removal efficiency: argon only, chlorine injection,
salt injection
Auto control system for quality casting
J. Strömbeck, Hono
This article explains how an existing casthouse can easily become
a modern automated factory using
Precimeter’s step-by-step process
upgrade philosophy. The foundry
industry has traditionally been
regarded as a low tech, heavy and
dangerous working environment.
With the Precimeter ‘auto control
system’ all this can change into a
modern, clean and safe environment.
Traditionally in casting, the metal
flow has been manually controlled by
an operator. Casting plants depend on
their most experienced operators for
high productivity and good quality.
These professionals are getting harder
ALUMINIUM
· 1-2/2008
61
to find. If they are on sick leave, or replaced by someone less experienced,
production suffers.
Often, the control of metal flow into
the mould depends on floaters. These
devices are inaccurate since they can
change over time as frozen metal adheres to them or they can malfunction
due to mechanical friction and wear.
The throttling device moves in direct
proportion to the floater position,
and disregards the characteristics of
flow rate versus slider position. The
level controlled is determined by the
individual floater, and so cannot be
changed during the cast. Also, floaters
provide no inherent way of recording
the metal levels using floaters.
The Precimeter auto control sys-
tem revolutionizes the whole casting process by offering step-by-step
automation from a single metal level
control to a fully automatic casting
process. The system provides benefits
including:
• Improved quality due to steady
metal levels throughout the process
• Increased productivity since
eliminating human error gives
better recovery rates
• Safer working environment for
the operators
• Casting repeatability
• Documentation of the process
• Step-by-step improvements
• Flexibility in setting metal levels
throughout the casting process
• Better use of manpower.
©
ALUMINIUM · 1-2/2008
61
Illustrations: Precimeter
A L U M I N I U M S M E LT I N G I N D U S T R Y
Fig. 1: Stationary furnace controlled by
TXP-6E tap-out actuator, ProH sensor and
control system
Fig. 2: Tilting furnace controlled by ProH
sensor and control system
Fig. 3: Control of molten metal level for
rod casting with PXP-2E pin position
actuator
Fig. 4: Control of molten metal level in
sheet casting with PXP-2E actuator
62
The concept of a fully automatic casting process can be implemented in existing casting processes. Using a step
by step approach one can upgrade
one part at a time.
The normal approach to automating casting begins by analysing the
current manual process and isolating the crucial elements to optimize
the return on the initial investment.
This could for example begin with
automating the furnace control or the
filling of the mould.
The way to begin depends on what
the customer regards as the key element to improve. Once installed, the
auto control system is ready for the next
level of automation just by adding the
Precimeter components, which consist
of the well known, market leading molten metal level sensor ProH together
with a range of suitable actuators.
Today, most furnace tapping processes are manually controlled. There
are two main types of furnaces: tilting
and stationary.
The tilting furnace employs a hydraulic piston that slowly tilts the
furnace to let the molten metal flow
into the launder system. The tilting action is manually controlled using push
buttons up / down. The operator looks
at the level downstream and uses his
experience to control the metal level
in order to get a good flow of molten
metal.
The stationary (also called gravity) furnace has a low positioned tap
hole which is opened to start casting.
The operator adjusts the flow manually using a control rod to a cone in
the tap hole. This is a dangerous operation where the operator is close
to the molten metal; in addition, it is
very difficult to estimate by eye and
accurately control the level further
downstream. The process obviously
depends on an expert proficient with
the process.
Precimeter has, together with
leading furnace manufacturers and
aluminium foundries, studied and
developed advanced, affordable solutions to automate these operations.
The first priority for the stationary
furnace has of course been the safety
of the operator. The employer is responsible, and cannot ignore the risk
to a man standing close to the furnace
tap out hole for hours to adjust the
control rod. Such working hazards
must be avoided.
New as well as old stationary furnaces can now be equipped with a tapout actuator TXP-6E or TXP-10. The
actuator clamps onto the control rod
with the cone, moving it in or out of the
tap hole, so as to maintain the desired
metal level in the launder. The actual
metal level downstream is measured
with the ProH digital camera sensor,
which feeds a signal back to a closed
loop auto control system, type MLC
M1, controlling the tap-out actuator.
This complete system (actuator,
sensor and control unit) guarantees
the desired metal level on set point
within an accuracy of 0.5 mm. This is
better than any human operator can
achieve, and improves safety for the
operators, who do not need to stand as
close to the molten metal (Fig. 1).
Accurate level control ensures
quality casting by reducing variables
to constants. A computerized control
system is able to reliably repeat the
same casting results over and over
again. This means less scrap and less
down time.
A tilting furnace does not represent
the same hazards for the employees as
a stationary furnace. The control buttons can be placed further away from
the molten metal, so the operator can
be further from the danger zone. But
the operator still has a great difficulty
in keeping the same metal level during each cast and from cast to cast.
This regulation depends on an experienced operator who estimates metal
level by eye and tries to keep it constant only by manual adjustment. The
solution to this problem is the new
Precimeter system for tilting furnaces
that uses a ProH sensor measuring the
level downstream. When the operator
decides that the level is perfect, he
switches to automatic mode, and then
the tilting of the furnace is controlled
automatically; keeping the level on set
point within 0.5 mm (Fig. 2).
This system employs a ProH camera sensor and an auto control system
MLC M1 as a very convenient retrofit
kit. This leads to less scrap, less down
time and better use of manpower as it
frees up one operator from the duties
of watching the metal levels.
ALUMINIUM · 1-2/2008
S
AML S M E L T I N G
A LPU E
M ICN II U
I N D U S TTRMYS & A L U M I N I U M I N D I A 2 0 0 8
Moving one step further down in the process, there is
obviously a need to control the metal levels in the mould.
This is easily done with a flow control actuator and a
ProH level sensor reading the metal level in the mould.
The company has experience with casting installations, starting with controlling the mould and implementing the auto control system MLC M1 or A1, depending on
how far the plant wants to automate. See figures 3 (rod),
4 (sheet) and 5 (ingot) as examples of different types of
systems installed in production plants.
The next natural step is to combine the furnace automation with the mould automation. This combined system is called ‘auto control flexible’, and it can handle up
to 4 different levels in a casting process. It works with
pre-programmed casting parameters and has an excellent repeatability. The system is easily handled through
the operator interface, a touch screen. See figure 6 (billet
casting) as an example.
For a more advanced casting process control, the company offers the auto control system ‘MLC Advanced’. This
system fully automates management of the entire casting
process. Using this system has proved that it increases productivity and produces less rejects. The process can be
recorded for traceability, and it learns to repeat the same
top quality casting time after time. See figure 7 (slab) as
an example.
The company’s auto control systems can communicate
with all major PLC brands used in factory automation
worldwide; they can interconnect with any existing factory process control system to make the upgrade smooth.
To provide safe and accurate function, all of the
above systems use the ‘Smart Filter’ software developed
and perfected by Precimeter’ software engineers during
years of testing. The systems are being sold and installed
worldwide by members of the company group and their
representatives. These inventions take the industry a
step forward by eliminating hazards, reducing scrap and
rejects, improving quality, and utilizing manpower in a
more efficient way.
Author
Fig. 5: Control of
molten metal level
in ingot casting
with TXP-6E and
starter dam actuators
Jan Strömbeck, M. Sc., is Managing Director of Precimeter Control AB, based in Hono near Gothenburg in Sweden.
Fig. 6: Billet casting with
ProH sensor and Precimeter
control system
Fig. 7: Slab casting
with PXP-2E and
starter dam actuators
ALUMINIUM
· 1-2/2008
63
ALUMINIUM · 1-2/2008
63
A L U M I N I U M S M E LT I N G I N D U S T R Y
History of intensive mixing
for anode paste used in aluminium electrolysis
About 84% of the world’s production of primary aluminium uses
prebaked anodes: this amounted
to approximately 30 million tonnes
of the 35.5 million tonnes made in
2006. The remaining 5.5m tonnes
came from older works with Soederberg technology so that the
requirement for anode paste was
about 16.5m tonnes for prebaked
anodes and 3m tonnes for Soederberg. More than every second
prebaked anode is produced from
either completely (Eirich Mixing
Cascade, ‘EMC’) or partially (cooler) intensively prepared paste. So,
intensive mixers for anode paste
have become state-of-the-art in the
primary aluminium industry.
Remixing and cooling
of anode paste
Already in the 1970s, individual intensive mixers were used as continuously
operating coolers for anode paste e. g.,
in the Netherlands
and
in Bahrain, then
an exten-
tinuously operating Eirich
intensive mixer proved it
could not only cope reliably with cooling but could
also achieve excellent homogenization of the paste.
By directly adding water
which immediately evaporates from the anode paste
it achieves far higher cooling capacities than established systems have ever
reached.
On top of that is the
effect of an almost ‘cost- Fig. 3: Development of baked density
free’ homogenizer: the
cooler also achieves a considerably
• Hot mixing temperature
improved paste quality compared to
optimized (increased) since it
single-step preparation thanks to the
becomes independent of the
relatively long retention time of 4 to
forming temperature
5 minutes, the intensive mixing effect,
• Long retention time and intensive
and the additionally introduced mixremixing of the paste
• Additional mixing energy
ing energy of approximately 4 kWh/t.
• Higher green and baked density
This is why hardly any single-step
and/or less pitch consumption
paste preparation lines were built in
• Lower electric resistance of the
the last 15 years. In the same period,
anode
numerous existing plants were retro• Clearly reduced porosity and
fitted with Eirich intensive remixeroptimized pore structure
coolers. Integrating this additional
• Lower chemical reactivity
machine into an existing building
• Allows some overall increase in
often posed a great challenge for the
the performance of the paste
engineers. In the end, they always
found a solution so as to profit from
preparation.
the decisive advantages.
It is important to note that such plants
have a greater construction height beThe advantages are:
cause they need an efficient exhaust
• Agglomerate-free paste with
air treatment system to extract steam
constant temperature
and pitch fumes efficiently.
• Essentially more stable paste
The effect of the Eirich cooler bequality by reducing parameter
comes especially apparent when retrovariations to less than 50%
fitting into existing lines because here
Fig. 1:
Intensive
mixing principle
sive test series at the Pechiney works in
Sabart (France) led to the breakthrough
of this technology around 1990 with
two more machines in France and
Australia. At that time, the customer
was looking for a paste cooler of high
performance and efficiency. The con-
64
Fig. 2: Green paste porosity as an indicator of mixing efficiency
ALUMINIUM · 1-2/2008
Illustrations: Eirich
B. Hohl, Hardheim
S
AML S M E L T I N G
A LPU E
M ICN II U
I N D U S TTRMYS & A L U M I N I U M I N D I A 2 0 0 8
tention time, compensation
of short-time variations in
paste composition, especially efficient and thus moderate energy input etc. On top
of that the machines are also
available for up to the highest throughput rates so that
an anode plant with just one
single preparation line can
supply most modern smelters with more than 600,000
tpy of aluminium. EMC lines
are available for throughputs
from 10 t/h to more than 60
t/h. In recent years several
lines were built in Europe,
Africa and East Asia. In 2008,
the first high-performance
line with a throughput rate
of 60 t/h will be supplied to
an aluminium smelter at the
Persian Gulf.
Conclusion
Fig. 4:
Flow diagram EMC
a direct comparison of preparation
quality is easily to do.
All-intensive preparation
of anode paste
The success of the intensive mixing
principle for paste cooling led to the
development of the EMC. Two seriesconnected intensive mixers perform
first hot mix the coke and binding
pitch and then subsequent remix and
cool the paste. The operational advantages of the Eirich intensive mixer
show up as low operating and maintenance costs, short standstill periods
for any wear-related repairs, long re-
Thanks to its decisive benefits, Eirich
intensive mixing has already become
proven technology in the anode paste
preparation sector. Further technical
and commercial growth is sure to follow.
The future lies with continuous anode paste preparation thanks to their
high efficiency at low investment and
operating costs.
References
1) P. Stokka, Green paste porosity as an
indicator of mixing efficiency, Light Metals TMS 1997, pp. 565-568.
2) B. Hohl and L. Gocnik, Installation of
an anode paste cooling system at Slovalco,
Light Metals TMS 2002, pp. 583-586.
3) B. Hohl and You Lai Wang,
Experience Report – Aostar
– anode paste preparation
by means of a continuously
operated intensive mixing
cascade, Light Metals TMS
2006, pp. 583-587.
Author
Fig. 5: RV24 EMC 35 t/h at Aostar China
ALUMINIUM
· 1-2/2008
65
Dipl.-Ing. Berthold Hohl is
Product Manager Carbon
Technology at Maschinenfabrik Gustav Eirich GmbH
& Co KG, Hardheim, Germany.
ALUMINIUM · 1-2/2008
65
MARKT UND TECHNIK
Ebner Industrieofenbau
Anspruchsvolle Anwendungen
bei der Wärmebehandlung
Demanding
heat treatment
applications
B. Rieth, Meerbusch
B. Rieth, Meerbusch
Fotos: Ebner
Ebner Industrieofenbau
Luftaufnahme vom Ebner-Standort Leonding nahe Linz, Österreich
Aerial view of Ebner site at Leonding near Linz, Austria
Diversifizierung ist eine der Strategien, mit denen internationale Anlagenbaufirmen versuchen, durch
eine Erweiterung ihres Portfolios
Einbußen an Sachlieferungen auszugleichen, die sie durch frühere
Zugeständnisse zu umfangreichen
Lokalfertigungen in aufstrebenden
Märkten wie China hinnehmen
mussten. Dies gilt nicht für die
österreichische Firma Ebner Industrieofenbau, die zu den weltweit renommierten Anbietern von
Wärmebehandlungsanlagen zählt.
Die Erfolgsfaktoren dieses Unternehmens sind Spezialisierung
auf Hochtechnologie, Qualität aus
eigenen Fertigungsbetrieben und
stetige Produktentwicklung.
Schmelz- und Gießöfen sowie konventionelle Erwärmungsanlagen im
Strangpressbereich sucht man bei
Ebner vergeblich. Stattdessen hat sich
das Familienunternehmen im Laufe
seiner 60-jährigen Geschichte auf andere Produktlinien für die Wärmebehandlung von Halbzeugen aus Stahl
und NE-Metallen konzentriert und
mit diesen eine führende Marktposition erreicht. Dieses sind:
• Haubenöfen für Stahlbandbunde
66
sowie Stahldrahtbunde
• Stahlbandvergüteanlagen
• Bandglühofenanlagen für legierte
und unlegierte Stahlbänder
• Haubenöfen für Messingbandbunde sowie Messingdrahtbunde
• Stoßöfen zum Homogenisieren
und Anwärmen von AluminiumWalzbarren
• Durchlaufglühöfen als Bandschwebeöfen zum kontinuierlichen Glühen von Bändern sowie
Rollenherdöfen für Aluminiumplatten und -bleche
• Kammer-Glühöfen für Aluminiumbunde in Einzel- oder Mehrfachbelegung.
Der hohe technologische Anspruch
der Wärmebehandlungsanlagen von
Ebner drückt sich im gemeinsamen
„Hicon“-Logo aus. Es steht für High
Convection und bedeutet den Einsatz
der von Ebner entwickelten Hochkonvektions-Technologie, die sich
durch eine funktionsspezifische und
verlustarme Umwälzung der Ofenatmosphäre, optimierten Medienfluss
um die gesamte Charge sowie einen
sehr geringen Energieverbrauch dank
effizienter Isolierung und externer
Rekuperatoren für jede Ofenzone
auszeichnet.
Diversification is one of the strategies with which international
plant manufacturers seek, by
extending their product range, to
counteract the inroads made into
specialist supply sectors affected
by earlier concessions which encouraged local manufacture in developing markets such as China.
This does not apply to the Austrian company Ebner Industrieofenbau, one of the most renowned
suppliers of heat treatment equipment worldwide. The factors that
shape the company’s success are
specialisation in high technology,
quality from its own production
operations, and continual product
development.
Do not expect to get melting and
casting furnaces and conventional
heating units for the extrusion sector
from Ebner. Over its 60-year history
the family-owned firm has concentrated on other product lines for the
heat treatment of steel and NF-metal
semis, and has achieved a marketleading position with them. They include:
• bell annealing furnaces for steel
strip and wire coils
• steel strip tempering units
• strip annealing units for alloyed
and unalloyed steel strips
• bell annealing furnaces for brass
strip and wire coils
• pusher-type furnaces for homogenising and heating aluminium
rolling ingots
• continuous furnaces as floatertype units for the continuous
annealing of strips, and roller
hearth furnaces for aluminium
plates and sheets
• chamber furnaces for annealing
aluminium coils individually or
in batches.
The high technological sophistication of Ebner heat treatment units is
proclaimed by the trademark ‘Hicon’,
ALUMINIUM · 1-2/2008
MARKETS AND TECHNOLOGY
This stands for ‘High Convection’,
denoting the use of the high-convection technology developed by Ebner
which is characterised by functionspecific and low-loss circulation of
the furnace atmosphere, optimised
media flow around the whole charge,
and very low energy consumption
thanks to the effective insulation and
external recuperators for each furnace zone.
Orientation towards
the aluminium industry
Besides the Hicon/H2 annealing technique, which is preferably used for
annealing steel strip coils in a pure
hydrogen atmosphere under high
convection conditions, Ebner has developed numerous technologies and
designs for heat treatment units for
the aluminium industry. Examples
are:
• an optimised slot nozzle system
for pusher-type furnaces, which
ensures rapid and uniform
heating of the whole charge in
the furnace
• an air-flow-controlled carrier
system, which supports an
aluminium strip up to 8 mm thick
in the floater-type strip furnace
• optimised quenching technology
for the quenching of plates, bars
and sections in water after the
roller hearth furnace.
The key components important for a
heat treatment unit, such as fan aggregates for circulating the furnace
atmosphere, burners, radiation tubes
and much more, were developed in
the company’s own laboratory, are
constantly being improved, and tested
for operational reliability in long-term
tests. They are of course produced in
the company’s own workshops.
With its own design department
for the sectors of mechanical engineering, gas and regulation technology, electro-technology, automation
and visualisation, Ebner can not only
react more flexibly to customers’
wishes and ever-stricter customer
standards, but also take advantage of
every improvement and accumulated
knowledge from the commissioning
of furnace units for the design of new
equipment.
©
ALUMINIUM · 1-2/2008
Ausrichtung auf
die Aluminiumindustrie
Neben der Hicon/H2-Glühtechnik, die
vorzugsweise zum Glühen von Stahlbandbunden in reiner Wasserstoffatmosphäre unter Hochkonvektionsbedingungen eingesetzt wird, hat Ebner
eine Vielzahl von Technologien und
Konstruktionen für Wärmebehandlungsanlagen für die Aluminiumbranche entwickelt. Beispiele sind:
• ein optimiertes Schlitzdüsensystem für Stoßöfen, das eine
rasche und gleichmäßige
Erwärmung der gesamten
Charge im Ofen garantiert,
• ein luftströmungsgesteuertes
Tragesystem, das ein bis zu
8 mm dickes Aluminiumband
im Schwebebandofen trägt
• eine optimierte Quenchtechnologie zum Abschrecken von
Platten, Stangen und Profilen im
Wasser beim Rollenherdofen.
Die für eine Wärmebehandlungsanlage wichtigen Schlüsselkomponenten
wie Ventilatoraggregate zum Umwälzen der Ofenatmosphäre, Brenner,
Strahlrohre und vieles mehr wurden
im hauseigenen Labor entwickelt,
permanent verbessert und in Langzeittests über Jahre auf ihre Betriebsicherheit geprüft. Gefertigt werden
sie selbstverständlich in den eigenen
Werken.
Mit eigenen Konstruktionsabteilungen in den Bereichen Maschinenbau, Gas- und Regeltechnik,
Elektrotechnik, Automatisierung und
Visualisierung kann Ebner nicht nur
auf Kundenwünsche und die immer
strenger werdenden Kundenstandards flexibel reagieren, sondern
bei Neukonstruktionen von Wärmebehandlungsanlagen auch rasch
sämtliche Weiterentwicklungen und
Erkenntnisse berücksichtigen, die bei
den Inbetriebnahmen von Ofenanlagen gemacht wurden.
Marktführer bei Stoßöfen
Beispiel Stoßöfen für Walzbarren: Mit
bisher 35 weltweit gebauten Anlagen
in den letzten 20 Jahren gilt Ebner
als Marktführer auf diesem Gebiet.
Stoßöfen werden eingesetzt zum
Homogenisieren und Anwärmen auf
Walztemperatur von Walzbarren mit
Gewichten bis zu 30 Tonnen und Abmessungen bis zu 8650 x 2200 x 650
mm. Kürzest mögliche Anwärmzeiten
mit einer maximalen Temperaturdifferenz von 6o K über die gesamte
Charge werden durch Anwendung
der Hicon-Technologie erreicht.
Neben zwei Stoßöfen, die im neuen
Warmwalzwerk von Yantai Nanshan
in China bereits in Betrieb genommen
wurden, liefert Ebner nach China drei
weitere für Asia Aluminium sowie
zwei für das neue Qualitäts-Bandwalzwerk von Xiamen Xiashun. Auch
in Russland kommen neue Stoßöfen
von Ebner zum Einsatz, und zwar im
Alcoa-Werk Samara.
Große Erwartungen auf eine Belebung des nordamerikanischen Marktes knüpft Ebner an einen neuen
Auftrag von Alcoa Rigid Packaging
in Knoxville, Tennessee. Die ©
Industrieofenbau seit 1902
1 ' 2*%-&#'#-&-'%%,%%
&&* ' */!' ' -' '
"", ' -"* '
,(*,' '
/*.#*,%3*$*'+,,
% ('
3% 0
#%)%,,"*&,('%#'3"(&)!",,)///)%,,"*&
Aluminium 2008 in Essen, 23.–25. September, Halle 4, Stand 4C24
67
MARKT UND TECHNIK
beiden Stoßöfen, die im Herbst 2008
in Betrieb gehen werden, können mit
48 Barren, das entspricht 1.200 Tonnen, beschickt werden. Sie sind damit
die weltgrößten dieser Bauart. Nicht
nur durch die verbesserte Qualität
und die niedrigeren Wartungskosten,
sondern vor allem auch durch die
von Ebner garantierte hohe Energieausnutzung angesichts der enorm gestiegenen Energiepreise rechnet sich
diese Investition für Alcoa innerhalb
weniger Jahre.
Vergüten von Aluminium-Platten
und Blechen: Wärmebehandlung
im Grenzbereich
Der von der Luftfahrtindustrie ausgehende Investitionsboom für Plattenerzeugungsanlagen bescherte dem
Unternehmen in der jüngeren Vergangenheit mehrere beachtenswerte Aufträge. Die hierfür eingesetzten Rollenherdöfen nutzen neben der HiconTechnologie eine ebenfalls im Labor
von Ebner entwickelte Quenchtechnologie, die auch die erforderliche
Trocknung einschließt. Da es sich
bei den Endprodukten zumeist um
Platten und Bleche für die Luft- und
Raumfahrt handelt, werden die Anlagen nach der strengen Luftfahrtnorm
AMS 2750 D ausgelegt. Diese fordert,
dass die Temperatur im Ofen (furnace
class 1) während der Haltezeit an den
beiden Grenztemperaturen nur um
+/- 3o K abweicht.
Vor kurzem in Betrieb genommen
wurden die Rollenherdöfen für OAO
KUMZ in Kamensk Uralski sowie für
Alcoa OAO in Belaja Kalitva, beide in
Russland. Die Plattendicken betragen
11 bis 150 mm bei einer beheizten
Ofenlänge von 31,5 m bzw. 6 bis 200
mm bei 36 m beheizter Ofenlänge.
Auch westeuropäische Werke haben
sich für Rollenherdöfen von Ebner
entschieden. Amag rolling GmbH in
Österreich erhielt eine weitere Anlage für Plattendicken von 15 bis 100
mm bei einer beheizten Ofenlänge
von 9,9 m, mit der Möglichkeit, die
Anlage um eine weitere Zone zu verlängern. Für Aleris in Duffel, Belgien,
wurde eine Anlage für Plattendicken
von 3 bis 150 mm bei einer beheizten
Ofenlänge von 19,8 m in Betrieb genommen. Das Ergebnis in all diesen
68
Fällen: bestmögliche Planheit, beMarket leader for
schädigungsfreie Oberflächen und
pusher-type furnaces
einwandfreie Gefügestrukturen der
vergüteten Platten.
Consider the example of pusher-type
Gerade auf dem Gebiet der Wärmefurnaces for rolling ingots: with 35
behandlung von Aluminiumplatten
units built all over the world over
konnte Ebner duch die Forschungsthe past 20 years, Ebner is the marmöglichkeiten im betriebseigenen
ket leader in this field. Pusher-type
Großlabor einen wichtigen Beitrag
furnaces are used for homogenising
zur Produkt- und Produktionsverand heating rolling ingots weighing
besserung liefern. Durch die innovaup to 30 tonnes and measuring up to
tiven Maßnahmen der F&E-Abteilung
8650 x 2200 x 650 mm, to their rollkonnten in enger Zusammenarbeit
ing temperature. The shortest posmit den Anwendern völlig neu entsible heating times with a maximum
wickelte Konzepte realisiert werden,
temperature difference of 6°K over
die auf modernste Qualitäts- und Leisthe whole charge are achieved by
tungsanforderungen von Hightechthe application of Hicon technology.
Produzenten und deren Produkte
Besides two pusher-type furnaces alzugeschnitten sind.
ready commissioned at the new rollIn diesem Zusammenhang meldet
ing plant of Yantai Nanshan in China,
Ebner die erstmalige Lieferung einer
Ebner is also to deliver three more to
Rollenherdofenanlage: nicht, wie bisChina for Asia Aluminium and two for
her üblich, zur Wärmebehandlung
the new high-grade strip rolling plant
von Aluminiumplatten, sondern von
of Xiamen Xiashun. In Russia too new
Profilen aus Aluminiumlegierungen.
pusher-type furnaces by Ebner are in
Die für Aleris in Duffel bestimmte
use, in particular at Alcoa in the SaAnlage ist für die über den gesamten
mara works.
Querschnitt verzugfreie WärmebeHigh expectations for the revival of
handlung von komplexen Strangpressthe North American market are linked
profilen mit maximalen Außenmaßen
by Ebner to a new contract from Alcoa
250 x 560 mm und einer Länge von
Rigid Packaging in Knoxville, Tennes13 m vorgesehen, die im
Fahrzeug- und
Flugzeugbau
zur
Anwendung kommen.
Dieser
Ofen
stellt eine echte
Innovation
dar, bei deren
Realisierung
das Labor von
Ebner in enger
Zusammenar- Rollenherdofenanlage bei der AMAG rolling GmbH in Österreich
beit mit dem Roller hearth furnace unit at AMAG rolling GmbH, Austria
Kunden seine
weitreichenden Möglichkeiten einsee. The two furnaces which will begin
bringen konnte. Die bisherige vertioperating in autumn 2008 can take up
kale Ofenbauweise mit all ihren Einto 48 ingots, corresponding to 1,200
schränkungen wird hier durch eine
tonnes, and are therefore the largest of
Horizontalanlage ersetzt.
their type in the world. Alcoa expects
a pay-back time of only a few years
for this investment, not only because
Kammeröfen mit Rechenmodell
of improved quality and lower mainfür optimalen Glühzyklus
tenance costs, but above all because
of Ebner’s guarantee of high energy
Auch bei dieser Produktlinie sucht
efficiency set against the enormously
Ebner die Marktnische von technoloincreased energy prices.
gisch anspruchsvollen Anwendungen,
ALUMINIUM · 1-2/2008
MARKETS AND TECHNOLOGY
The investment boom in plate production plants created by the aviation industry has in the recent past
secured a number of notable orders
for Ebner. Besides Hicon technology
the roller hearth furnaces used for this
employ quenching technology also
developed in the company’s laboratories, which also includes the necessary drying. Since the end products
are mostly plates and sheets for use
in aerospace, the plant is designed in
accordance with the strict AMS 2750
D aviation standard, which demands
that in a Class 1 furnace the temperature may only deviate at the two limit
values by no ore than ± 3°K.
Recently commissioned were the
roller hearth furnaces for OAO KUMZ
in Kamensk Uralski and Alcoa OAO
in Belaja Kalitva, both in Russia. ©
PROFHAL entwickelt, fertigt
und veredelt hochwertige
Aluminium-Profil-SystemKomponenten für
unterschiedlichste
Anwendungsgebiete.
INDIVIDUELLE LÖSUNGEN
AUS ALUMINIUM
ALUMINIUM · 1-2/2008
bei denen in zunehmendem Maße die
Luftfahrtnormen zur Anwendung kommen. Dazu zählen auch die an Aleris
Koblenz gelieferten Kammeröfen zum
Glühen und Altern von Platten für die
Flugzeugindustrie, wobei die zuletzt
gelieferte Anlage für zukünftige Plattenlängen von 34 m und eine maximale Charge von 150 Tonnen bezüglich
der geforderten Temperaturgleichmäßigkeit hervorzuheben ist, die weit
unterhalb der von der Luftfahrt bisher
geforderten Toleranzen liegt.
Die bei Ebner im Laufe der Jahre
über viele Versuchsreihen angelegten
Datenbanken über Temperaturverläufe bei den unterschiedlichen Aluminiumlegierungen sind die Basis für
eine Spitzenpositionierung bei der
Entwicklung von Rechenmodellen.
Übertragen auf die Produktionsanlagen steuern sie mit hoher Zuverlässigkeit die Temperaturführung während
des gesamten Wärmebehandlungsvorgangs. Erwähnenswert ist in die-
sem Zusammenhang der Einsatz des
von Ebner für Einzelbundöfen entwickelten Rechenmodells „BOS“ (Batch
Furnace Optimization System), das
erstmals auch bei einem MehrbundKammerofen angewendet wurde.
Das Rechenmodell ermittelt für die
jeweiligen Bunddimensionen und
Legierungen sowie deren Glühparameter den optimalen Glühzyklus. Die
vorausberechneten Temperatur- und
Zeitwerte werden laufend mit den gemessenen Werten kontrolliert und bei
Bedarf angepasst. Dies garantiert optimale metallurgische Eigenschaften
und eine Reduktion der Durchlaufund somit der Produktionszeit.
Autor
Dipl.-Ing. Bernhard Rieth ist Marketingspezialist und freier Fachjournalist.
Als Inhaber der Marketing Xpertise Rieth
in Meerbusch berät er Ausrüstungspartner
der NE-Metall-Halbzeugindustrie in Marketingfragen.
www.haarmann-gruppe.de
Tempering of aluminium plates
and sheets: heat treatment in
the limiting range
PROFHAL ALUMINIUM PROFIL
BEARBEITUNG GMBH
Ein Unternehmen der
HAARMANN-GRUPPE
Dettenheimer Straße 30
91781 Weißenburg
Tel. 0 91 41/8 55 65-0
www.profhal.de
69
MARKETS AND TECHNOLOGY
truded sections
plate lengths of 34 m and a maximum
with maximum
charge of 150 tonnes achieves results
overall dimenfar below the tolerances demanded
sions of 250 x
for aviation until now.
560 mm and
The database compiled by Ebner
a length of 13
over the years on temperature variam, all over the
tions in the various aluminium alloys,
cross-section
which are the fruit of numerous test
without
any
series, are the basis for achieving a
distortion
or
peak position in the development of
warping. These
computed models. When transferred
are intended for
to the production units these ensure
use in automovery reliable control of the temperative and aircraft
ture management throughout the heat
engineering.
treatment process. In this connection
The furnace is
it is worth mentioning Ebner’s use
Stoßofenanlage bei Yantai Nanshan Aluminium in China
a real innovaof the computed model ‘BOS’ (Batch
Pusher-type furnace unit at Yantai Nanshan Aluminium, China
tion, for whose
Furnace Optimisation System) derealisation the Ebner laboratory colveloped by the company itself for
The plate thicknesses range from 11
laborated closely with the customer
single-coil furnaces, which was for
to 150 mm in a furnace with a hot zone
by providing its far-reaching posthe first time used also for a multi31.5 m in length, or 6 to 200 mm in
sibilities.
The
previous,
vertical
furcoil chamber furnace. The computer
one with a hot zone 36 m long, renace
structure
with
all
its
limitations
model determines the optimum anspectively. Plants in western Europe
is
in
this
case
replaced
by
a
horizontal
nealing cycle for the coil dimensions
too have opted for roller hearth furunit.
and alloy concerned, and the annealnaces by Ebner. Amag rolling GmbH
ing parameters required. The pre-calin Austria is getting another unit for
culated temperature and time values
plate thicknesses of 15 to 100 mm in
Chamber furnaces with a
are continuously checked against the
a furnace hot zone 9.9 m long, with the
computed model for
measured values and adaptations are
possibility of extending the unit by an
optimal annealing cycles
made as necessary. This ensures opadditional zone. For Aleris in Duffel,
timum metallurgical properties and
Belgium, a unit for plate thicknesses
In this product line too Ebner has
speeds up the throughput and hence
of 3 to 150 mm in a furnace hot zone
sought to serve the market niche of
the production time.
19.8 m long has begun operating. The
technologically sophisticated appliresult in all these cases has been the
cations, for which the aviation standbest possible flatness, surfaces free
ards are applied to an ever-increasfrom damage, and perfect metallurgiing extent. These also include the
Author
cal structures in the tempered plates.
chamber furnaces supplied to Aleris
Dipl.-Ing. Bernhard Rieth is a marketing
Precisely in the field of aluminKoblenz for annealing and ageing
specialist and freelance technical journalium plate heat treatment and thanks
plates for the aircraft industry. In reist. As proprietor of Marketing Xpertise
to the research facilities in its own
lation to the temperature uniformity
Rieth in Meerbusch he advises equipment
major laboratory, Ebner has been
demanded, it should be stressed that
partners of the NF-metal semis industry on
able to make important contributions
the unit recently delivered for future
marketing-related issues.
towards product and production improvement. Thanks to the innovative
Ebner Industrieofenbau – facts & figures
activities of its R & D department and
Founding year
1948
in close collaboration with customers,
Main product lines
Bell annealing furnaces, strip annealing furnaces,
completely new concepts have been
pusher-type furnaces, floater-type furnaces,
roller hearth furnaces, chamber furnaces
developed which are tailor-made for
Total turnover
150 million euros
the most modern quality and performManufacturing locations
Employment
ance demands made by high-tech
Linz, Austria
750
manufacturers and their products.
Wadsworth, Ohio/USA
60
In this connection Ebner has anTaicang, P.R. China
120
nounced the first delivery of a roller
Additional service stations
Japan, Taiwan
hearth furnace unit, not as previously
Industries served
Turnover in percent
usual for the heat treatment of aluminSteel
70%
Aluminium
25%
ium plates, but instead for that of aluCopper & Cu-alloys
5%
minium alloy sections. The plant, desAnnual R & D expenditure
At present: 5 to 6 percent of turnover
tined for Aleris in Duffel, is designed
In future: 8 percent of turnover
for the heat treatment of complex ex-
70
ALUMINIUM · 1-2/2008
MARKETS AND TECHNOLOGY
Peter H. Ebner: “The decisive factor for our success is the high
quality standards we insist upon”
Robert Ebner: “In the coming
years we intend to increase
our research and development
expenditure to eight percent of
turnover”
“We decide the
competition in
terms of quality”
Interview with Peter H. Ebner and
Robert Ebner, CEO of Ebner
Industrieofenbau GmbH
ALUMINIUM: Mr. Ebner, for products
such as Hicon / H2 bell annealing furnaces your company has developed to
become the undisputed world market
leader, and for other furnace types
you are one of the top suppliers. To
what do you attribute your outstanding position among international furnace manufacturers?
Peter Ebner: The decisive factor for
our success is the high quality standards we insist upon, and from which
we will not deviate at any price. Even
if we occasionally miss the mark and
do not get a chance. Ebner’s focus is
ALUMINIUM · 1-2/2008
the customer and his special technical
requirements. Our aim is to offer him
the technically optimum solution for
his needs.
ALUMINIUM: With no thought of
price in this?
P. Ebner: We are aware that our prices
are at or near the top of the range. We
cannot and do not wish to win orders by aggressive price competition.
Rather, we look to establish a fair partnership with our customers, to whom
we offer tailor-made plant solutions
which work absolutely reliably for a
long time. That cannot be done for
bargain prices. When one looks not
just purely at the purchase price of a
unit but also at its long-term economy,
we have no reason to fear competition
from elsewhere.
ALUMINIUM: Let us focus on the
economic aspect. What are your main
thoughts about that where a furnace
is concerned?
Robert Ebner: An essential criterion
which is becoming continually more
important is the energy-efficiency of
our furnaces. I refer here to our Hicon
technology, with which we equip all
our furnaces. For example, at present
we are building two pusher-type furnaces for our long-term customer
Alcoa in the USA – in fact, the largest of their kind built anywhere in
the world. Thanks to the substantially more efficient use of energy that is
possible today compared with existing box furnaces, and also to their low
maintenance needs, the customer’s
pay-back time on the investment will
amount to only a few years.
ALUMINIUM: How much importance
do you attach to the international
orientation of your company with
its facilities in Austria, the USA and
China?
P. Ebner: Ebner was founded in Linz
sixty years ago by my father. That is
still the headquarters and technical
centre for our company’s know-how.
Our American plant in Wadsworth,
Ohio, was established in 1987. Our
aim was to gain a foothold in the dollar area. From Wadsworth we serve
the North American market and the
regions that operate with US dollars.
For Ebner, business in America grew
rapidly until 1999. In the USA we
sometimes even achieved a turnover
fraction of almost fifty percent of all
our business.
ALUMINIUM: How is that plant justified today in view of the investment
slump of the steel and NF industries
there, which has lasted for some
years?
P. Ebner: Even through hard times
I have continued believing in our
commitment in America. Without a
presence in the dollar area the region
cannot be served, as is shown all too
clearly now by the present weakness
of the dollar.
ALUMINIUM: So will you continue
operating in America?
R. Ebner: Of course. In the USA there
are many furnaces which have been
operating since the late forties or early
fifties and which, in view of the high
cost of energy, must now be replaced
by modern, energy-saving units.
ALUMINIUM: Let us now look at the
most dynamic economic area of all:
how do you assess development in
Asia?
P. Ebner: Our Asian business has been
growing bit by bit for many years, and
we have approached that market in
small, well-prepared steps. After initially gaining a presence with servicing stations in Japan and Taiwan, it
became increasingly clear as the years
passed that we needed a production
base of our own in Asia.
R. Ebner: To begin with, we looked for
suitable locations in South Korea. It is
true that Korea would have had the
necessary infrastructure, but it was
very expensive. Thailand would have
been suitable in terms of living conditions for our Austrian employees,
but there the environment was not
right. At the end of the day we opted
for China. We had many preliminary
talks to clarify location-related questions such as: what are the stumbling
blocks, where is there an appropriate
industrial estate, etc. Finally, in 2002
we decided to build a plant of our own
in Taicang, near Shanghai, where we
recently completed the fourth expansion stage.
ALUMINIUM: How free were you in
your decision-making?
P. Ebner: What we built up in Taicang was created without any restrictions on the part of Chinese authorities. In any case it is not a joint ©
71
MARKETS AND TECHNOLOGY
venture, but a company wholly owned
by Ebner. I would not have gone to
China if it had been necessary to set
up a joint venture there with a Chinese partner.
ALUMINIUM: What experiences can
you pass on to others who are faced
with similar decisions?
P. Ebner: Our USA project taught
us that we could not rely purely on
American staff, but that at least for
some years we had to send across
highly qualified technical personnel
from Linz. Precisely for a company
such as Ebner which sets great store
by quality, that is unavoidable. The
commitment of technicians from Linz
on the basis of three- to five-year contracts was decisive in ensuring that
both qualitatively
and in terms of
production figures,
the plant attained
satisfactory levels
within two years.
R. Ebner: The learning curve we travelled in the USA in
our first years there,
we could then avoid
in China. From
the beginning, the
new
production
management and
quality monitoring
were in the hands
of senior staff from
our parent plant in
Austria. Of course, that is not to belittle the importance of our Chinese
employees, who have to deal with
‘China-internal’ issues.
ALUMINIUM: It must surely have
been an enormous challenge for a
medium-sized company to do without
some of its specialists at the parent
plant.
P. Ebner: Quite right, but there was
no other way to guarantee our high
quality standards – which for us, is
indispensable.
ALUMINIUM: Do you perceive signs
that India’s steel and NF-metal industries will soon be following in China’s
footsteps and so catching up?
R. Ebner: In our estimation China has
moved far ahead of India in terms of
infrastructure and the quality of life of
72
personnel in recent years. It is true that
India has the major advantage of using
the English language, but the progress
of its infrastructure is slow. Nevertheless, India is a very important growth
market with a steadily expanding
middle class, with many ‘consumers’,
who stimulate the economy. India is
becoming continually more important
for us Europeans, but its development
will not be as rapid as in China.
P. Ebner: To return to our plant in China: we are naturally very interested
in exporting from Taicang to the surrounding Asian countries, including
India for at least the past year, where
we are at present carrying out some
major assembly projects. We provide
the less expensive parts of furnaces
Ebner laboratory at Leonding
from Taicang – at prices that are very
acceptable in India.
ALUMINIUM: That raises the question: what do you now still produce
in Linz?
P. Ebner: Here in Linz we make all
the components that are quality-critical for our business and which, if they
were to be copied, would threaten the
future of our company. Thus, so long
as there is still no effective copyright
or patent law in China, we will supply such know-how-rich components
from Linz.
ALUMINIUM: So how do you divide
the production between your three
plants?
R. Ebner: We have analysed our various furnace types and split them into
A-, B- and C-components. A-compo-
nents are made only in Austria or the
USA, B-components at all three locations, while because of labour costs
it makes sense to produce C-components only in China.
In the 1990s we resisted pressure
from several customers who wanted
us to produce key-components of our
units – for example the bases of our
bell annealing furnaces – in China as
well. We strictly refused to do that,
even at the risk of no longer receiving
any orders. This led to four or five relatively slack years when we got fewer
orders for bell annealing furnaces, until finally things changed again. Today,
it is more of a selling-point for our furnaces that the core of our units come
from Linz or the USA.
ALUMINIUM:
What other functions have you concentrated in Linz?
R. Ebner: Our company philosophy
is to do all the research in our laboratory in Austria,
because the experience from all
our plants comes
together here and
we do not want to
operate a two-track
system. Whether in
good years or bad,
we invest five to six
percent of turnover
in research and development. That
is already a high proportion and in
the coming years we even intend to
increase it to eight percent. We are
convinced that to secure the future of
our company this is vitally important.
Among other things we want to enlarge our laboratory.
ALUMINIUM: What are the laboratory’s main tasks?
P. Ebner: Consider for example the
support of sales: quite often a customer comes to us because he cannot
achieve the necessary product quality with his existing equipment. Nobody who comes to Ebner has to base
his purchasing decisions on written
guarantee values alone. Instead, we
can demonstrate the quality guarantee we give using our own equipment.
ALUMINIUM · 1-2/2008
MARKETS AND TECHNOLOGY
For this, as a rule we work with test
equipment on a one-to-ten scale and
occasionally, for certain problems,
with full-size units – for example the
annealing of coil batches. We fit these
with thermocouples all over, anneal
and heat treat them in the presence of
the customer, and he can then inspect
the analyses himself or send them on
to his own buyer.
It is important that in our research
we tend to and optimise the dovetailing and interplay of all the individual
plant components. For example, we
have long been developing our own
burner technology because we do not
want to rely on others for important
plant components.
ALUMINIUM: Has the development
potential for furnaces not now been
largely exhausted?
R. Ebner: I do not believe so. As an
example: in the case of bell annealing
furnaces for steel coils, which with
their hydrogen technology and high
convection we have been selling very
successfully for some thirty years, we
have meanwhile arrived at the sixth
generation. In this, we have boosted
furnace performance by forty to fifty
percent, whereas the price has moved
downwards. Such development can
only be achieved with a laboratory of
one’s own.
P. Ebner: Another thing that must not
be underestimated: to help us remain
an attractive employer the laboratory is a very important factor. That
is where the technical staff can try
out their own ideas, and this has so
often been to our benefit, while in the
meantime we have formed an international thirty-man team.
ALUMINIUM: So the laboratory plays
a major part among the factors that
contribute to your success …
P. Ebner: … as also does the low
fluctuation level of our employment
structure. We have people who already represent the third generation
that has worked for Ebner. They often
come to us as apprentices and stay on
at Ebner all their working life. Every
year we train twenty apprentices, and
we have also adopted in America the
same apprentice training as in Linz.
We also offer our most able employees the chance to attend engineering
college in the evenings and become
more highly trained. We then place
such employees in the laboratory, the
design and construction departments,
or in sales.
ALUMINIUM: Mr. Peter and Mr. Robert Ebner, many thanks for this discussion.
Siemens liefert Fertigstraße für
Aluminium-Warmwalzwerk nach China
Siemens Metals Technologies hat von
der Chinalco Aluminium den Auftrag
über die mechanische und elektrische
Ausrüstung einer neuen Fertigstraße
mit Zwillingshaspel erhalten. Das
Warmwalzwerk wird bei der Chinalco Ruimin in Mawei/Fuzhou, Provinz
Fukien, errichtet. Das Auftragsvolumen beträgt rund 20 Mio. Euro. Das
erste Aluminiumband soll im September 2009 gewalzt werden. Die
Fertigstraße ist Teil eines geplanten
neuen Warmwalzwerkes, das im Zuge
eines großangelegten Ausbauprojekts
von Chinalco Ruimin in den nächsten Jahren errichtet werden soll. Das
Vorgerüst und der vertikale Staucher
werden von einem lokalen Lieferanten mit technischer Unterstützung
von Siemens beigestellt.
Die zu liefernde Fertigstraße umfasst ein Quarto-Gerüst mit automatischer hydraulischer Walzspaltregelung sowie positiver und negativer
Arbeitswalzenbiegung. Das Warmwalzwerk wird über eine Kapazität
von 270.000 Jahrestonnen verfügen
und ist für Bänder mit Breiten ©
ALUMINIUM · 1-2/2008
Siemens supplies new
aluminum hot finishing mill to China
Siemens Metals Technologies has
received an order from Chinalco
Aluminium Co., Ltd, to supply the
mechanical and electrical equipment
for a new hot aluminium twin coiling
finishing mill. The plant will be built
at Chinalco Ruimin at Mawei/Fuzhou
in Fujian province. The order volume
is around 20 million euros; production of the first coil is scheduled for
September 2009. This mill will form
a key part of a proposed new aluminium 1+1 hot line, which is the key
process component of a major plant
expansion planned by Ruimin. The
roughing stand and the vertical edger
will be built by a local supplier with
technical support by Siemens.
The finishing mill will comprise a
4-high stand equipped with hydraulic
automatic gauge control and positive
and negative bending. The mill itself
will be designed to roll a wide range
of products and alloys, and will be capable of rolling over 270,000 tonnes
per year at widths in excess of 2.2
metres. In addition to the mechanical
equipment, Siemens is also supplying
the entire automation system and the
drive systems as well as the process
automation system for the complete
hot line. All the components and systems used are part of ‘Siroll Alu’, the
integrated solution for aluminium hot
mills.
UK facilities become Competence
Centre for plate rolling mills and
aluminium plants
Siemens Metals Technologies has
combined its two UK locations in
Sheffield and Christchurch into the
special subdivision ‘Plate & Aluminium Rolling’, which will be responsible for the worldwide business ©
73
MARKT UND TECHNIK
von mehr als 2,2 Meter ausgelegt.
Neben der mechanischen Ausrüstung
liefert Siemens das komplette Automatisierungssystem und die Antriebstechnik, außerdem die Prozessautomatisierung für das gesamte Warmwalzwerk. Alle eingesetzten Systeme
und Komponenten sind Bestandteil
von „Siroll Alu“, der integrierten Lösungsplattform vom Siemens für Aluminium-Warmwalzwerke.
Britischer Standort wird Kompetenzcenter für Grobblech-Walzstraßen und Aluminiumanlagen
Siemens Metals Technologies hat
seine beiden britischen Standorte
Sheffield und Christchurch zu dem
Geschäftszweig „Plate and Aluminium Rolling” zusammengefasst, in
dem künftig das weltweite Geschäft
mit Grobblech- und Aluminiumwalzstraßen betrieben wird. Der steigende
Bedarf an Grobblechen beflügele auch
das Anlagengeschäft mit Walzstraßen,
sagte Hans-Werner Linne, Leiter des
neuen Geschäftszweiges.
Während vor allem in China, Indien
und Russland der Neubau von Anlagen geplant wird, liegt der Schwerpunkt in Europa und Nordamerika
auf der Modernisierung, um durch
die Leistungssteigerung bestehender
Anlagen die wachsende Nachfrage zu
befriedigen. Dies lässt sich jedoch nur
mit dem Ausbau des Serviceangebots
erreichen. Um das Angebot zu erweitern, wurde daher die Plate Mill Consulting Group in Sheffield gegründet.
Im Modernisierungsgeschäft verfügt der neue Geschäftszweig Siemens
zufolge weltweit über einen Marktanteil von 48 Prozent bei Aluminiumanlagen. Schon heute, in einer Zeit
boomender
Neuanlagen-Projekte,
will sich Siemens mit dieser Strategie
auf neue Marktgegebenheiten künftiger Jahre vorbereiten. „Mittelfristig
erwarten wir einen starken Anstieg
des Modernisierungsgeschäftes”, so
Linne.
N
with plate and aluminium rolling
mills. The growing demand for heavy
plate was also boosting project business with rolling mills, Hans-Werner
Linne, head of the new subdivision,
said.
There are plans to construct new
plants, especially in China, India and
Russia, whereas, in Europe and North
America, the focus is on modernisation. Here, improving the performance of existing plants is supposed
to satisfy rising demand. This will
involve expansion in the scope of
maintenance solutions on offer as
well as a wider range of services for
plant modernisation. To this end, a
Plate Mill Consulting Group was set
up in Sheffield.
According to Siemens the new business unit has global shares of 48% in
modernising of aluminium mills. The
task of the company is to take action in
a time of booming ‘greenfield’ projects
in order to adequately prepare for the
market in the future.
N
Aluminium for building and construction in China
Shi Lili, Beijing
All sources: Beijing Antaike
Chinas’s aluminium extrusion industry for building and construction took its first steps in 1980.
In the 1990s China’s aluminium
industry for building and construction moved into a new era
featured by quality, variety, profits
and product structure. Today China’s construction industry is the
driving force of the growing demand for aluminium products. In
the long run aluminium products
for construction will maintain the
leading position in the aluminium
extrusion industry.
Brief history and status quo
Although China had its own complete
aluminium products extrusion line as
early as 1956 when Northeast Light
Alloys Company was set up, and also
brought over eight hydraulic machines from Japan UBE Machinery
in 1971, these units were all devoted
74
to aluminium products for industrial
use. China’s aluminium extrusion
industry for building and construction took its first steps in March 1980
when Guangzhou Dongjiao Yuncun
Aluminium 6th Plant was put into production. This was a joint venture be-
tween Guangzhou 2nd Light Industry
Aluminium Products Company and
China Aluminium Corporation, Hong
Kong. Except for a melting furnace
and the anodic oxidation treatment
line, all other technologies depended
on Hong Kong and Taiwan. Also in
ALUMINIUM · 1-2/2008
MARKETS AND TECHNOLOGY
the same year, Liaoning Yingkou Aluminium Products Plant and Tianjin
Aluminium Alloy Plant introduced
16.3 MN hydraulic machines from Japan UBE Machinery. This means that
China’s aluminium production for
building and construction started in
both Northern and Southern regions
almost at the same time. In the middle of the 1980s China was undergoing its first boom of the aluminium
extrusion industry. By 1986 China
had 175 aluminium extrusion plants
with 380 kt/a of production capacity
and 400 extrusion machines. However, a cold snap followed since the
country adopted policies to restrict
aluminium products and application in building and construction
that year and aluminium production
accordingly dropped substantially.
Yet another surge of aluminium
products in China began from 1991
to 1998 with deeper and more widespread influence than that of the mid
1980s. All provinces except for Tibet
had their own extrusion plants, including five in Hainan Province in
the far south of China. There were
1,142 plants in total with 4,000 extrusion machines and a total production
capacity of 4,300 kt/a of at that time.
Since then, China’s aluminium industry for building and construction has
moderated the pursuit of quantity
and moved into a new era featured
by quality, variety, profits and product structure.
After years of booming development since 1999, the number of extrusion plants dropped below 600 and
all five of the plants in Hainan were
shut down, mainly because of increasingly intense competition among the
market participants and aggravating
market conditions. After 2000, China
began to shift its strategy and put
more effort into the added value of
aluminium products. Thus, production capacity increased at a lower rate
of approximately 10 percent annually.
By the end of 2005 the number of aluminium extrusion plants had fallen to
650, with approximately 5,100 kt/a of
production capacity and 3,000 extrusion machines, and China held first
place in terms of number of companies, production capacity and total
production.
ALUMINIUM · 1-2/2008
After years of adjustment of the
product structure by the market, the
number of extrusion plants has been
on the decrease in recent years, yet
total exports have gone up. In 2006
alone total exports amounted to 68 kt
or 45 percent of total world exports,
making China the major aluminium
production base in the world.
By the end of 2006 China’s aluminium extrusion production reached
4,500 kt/a, of which 80 percent was
for building and construction. Advanced technologies and machines
contributed a lot to this speedy development. At present, many Chinese
extrusion companies have invested in
foreign equipment and technologies
which helped Chinese enterprises,
both state owned and private, to make
fast progress. This also brought huge
379 for coloured anodising, 86 for
static spraying, 22 for fluorine carbon
spraying, 91 for electrophoretic painting and 31 for wood treatment lines.
Besides these, China also paid attention to the self innovation and its first
7,500 t short-stroke extrusion machine was put into use in 2006. In the
same year, China also made its first
1,000 t reverse extrusion machine. Up
to the present China owns 20 big extrusion machines of 5,000 to 12,500 t,
including those already in use, being
installed, or on order.
The attractiveness of the Chinese
market has also brought numerous
suppliers of auxiliary equipment and
materials into the country. Especially
with more recognition of Chinese aluminium products on the international
market and wider applications, most
business opportunities for foreign
machine manufacturers. According to
statistics, so far China has introduced
1,026 extrusion machines from other
countries or regions, mainly from
Taiwan and Japan since 1980, and
this accounts for about 70 percent
of the total. Out of this number, 446
machines were for surface treatment,
market participants, both at home
and abroad, approach China’s market
with confidence.
Present market situation
China’s construction industry has
been the driving force of the growing
demand for aluminium products. The
75
MARKETS AND TECHNOLOGY
main focus is on three aspects:
• line-supporting poles and pylons,
to reduce total weight
• airplane runways, to increase
flexibility
• satisfying various demands relating
to house decoration.
China’s apparent consumption of aluminium extrusion products grew by
26.4 percent to 4,080 kt/a in 2006.
Among this, aluminium products for
building and construction account for
almost 70 percent of the total. In 2006
China’s production of automobiles,
motorcycles, bicycles, household
appliances,
microelectronic computers,
cell-phones, etc. increased at a headlong
pace. Also since 2006,
China’s civil aviation
project was activated,
railway transportation developed at a
high rate and highspeed trains entered
a new phase. All these
sectors provide good
market prospects for
extruded aluminium
products.
Yet China’s use of aluminium for
building and construction will continue to maintain the leading position,
owing to the strong development of
China’s construction industry. In 2006
alone, China’s house construction
acreage reached 2.1 billion square
meters, an increase of 21 percent
compared with 2005.
Construction acreage is the pioneer index for future aluminium production for building. On average, the
house completion acreage has been
growing at 4 percent each year from
1995 to 2006. Between 2007 and 2010
China’s real estate investment will
grow at an average annual rate of over
15 percent and the house completion
acreage will increase by over 10 percent each year. Accordingly, demand
for aluminium products by China’s
construction industry will increase by
a constant 12 percent, corresponding
to an additional demand for aluminium of 500 kt/a per year.
Statistics show that over 50 percent of China’s new houses are made
with aluminium door and window
76
frames. One-third of every 10 million square meters of completed construction acreage each year involves
aluminium products and each square
meter consumes 15 kg of aluminium.
Besides, pipelines, handrails, ladders,
decoration parts, etc. also involve
large quantities of aluminium products.
In the long term, with China’s urbanization and industrialization in the
years to come, China’s alumina consumption will continue to increase. It
is forecast that aluminium products
for building and construction will
grow by eight to 15 percent, to 2,430
kt/a, 2,720 kt/a and 2, 940 kt/a in
2005, 2006 and 2007 respectively.
Although aluminium extrusion is
generally regarded as an energy-intensive industry, the construction acreage
increases by two billion square meters
each year in China. On the basis that
aluminium products for doors, windows and walls account for 30 percent of total construction materials,
the prospects for aluminium for construction and building are quite promising in the future, granted the annual
increase of about 25 to 30 percent in
real estate investment. It is expected
that with the coming Beijing Olympic Games in 2008 and the Shanghai
World Expo in 2010, China’s demand
for aluminium construction products
will stay above 3,200 kt/a until 2010.
As for China’s demand for aluminium considered sector by sector, the
main products are generally aluminium sections, plates and foils, casting,
wires, bars and poles. Considering the
example year of 2005, China’s total
consumption of aluminium products
in the construction sector was 2,680
kt, of which 77 percent is for aluminium profiles.
Future prospects
China, as a large aluminium producer
and consumer at present and in the
future, has its own undisputed advantages in terms of market consumption
and low production cost. Accordingly,
some international aluminium companies have already or are planning
to set up production bases in China.
It is expected that the production capacity and total production of China’s
aluminium extruded
products will grow by
5.8 percent and 7.5
percent respectively
on average from 2007
to 2010, and will reach
6,890 kt/a and 5,520
kt/a by 2010.
It is predicted that
China’s apparent aluminium consumption
for building and construction will reach
over 3,000 kt by 2010
and will account for
over 60 percent of total aluminium
extrusion consumption. This percentage may be a little lower due to
rising aluminium consumption for
industrial use.
Until now, the production and
number of companies for aluminium
products used in construction still
maintains the dominant position in
the overall aluminium extrusion industry in China. At present, over 480
enterprises hold formal legal permits
to produce aluminium products for
building and most of them are privately owned, especially in Guangdong.
In the long term aluminium products
for construction will still maintain
the leading position in the extrusion
industry.
Author
Shi Lili works as a freelance journalist for
foreign media and is a consultant for foreign companies interested in Beijing, P.R.
of China. Amongst others, she has two
years of working experience in the Foreign
Affairs Department of China Nonferrous
Metals Industry Association (CNIA).
ALUMINIUM · 1-2/2008
MARKETS AND TECHNOLOGY
Winners of the
European Aluminiumin Renovation Award 2007
The European Aluminium in Renovation
Award, which ran throughout 2007, involved
15 European countries, a series of national
competitions and a European final rewarding the most innovative and sustainable uses
of aluminium in building renovation. The
winning entries illustrate that whether used
to preserve a piece of national heritage or
to upgrade the environmental performance
of residential or utility buildings, aluminium
is the most sustainable solution.
The 2007 Renovation Award is an initiative of the ‘Building Group’ of the European
Aluminium Association (EAA) and the Aluminium For Future Generations programme
in cooperation with national aluminium
associations in many European countries. An
international jury judged 47 entries nomi-
nated by seven national competitions. Five
Awards, three Special Prizes, a Jury Prize
and one Honourable Mention were given
to representatives of the winning projects.
Presentation of the awards and other prize
winners took place during the Batimat 2007
at the Expo Center Porte de Versailles in
Paris. Batimat is Europe’s biggest Expo for
Building and Architecture.
The concept of aluminium in renovation covered not only renovation, but also
restoration and re-construction provided the
former structure of the building had been
maintained such as changing the function
of an existing building, e. g. turning a warehouse into apartments.
The following criteria were taken into
account when assessing the entries:
• Significant use of Aluminium
• Contemporary design
• Life cycle thinking
• Energy efficiency
• Socio-economic impact
• Added value to the original building
In the following a presentation of some of
the award-winning projects.
Award in the Category Historical Buildings
Milan, Italy
Aluminium products: Metra
Project: The restoration and recovery of the Pirelli building was conducted via a system of interventions which
provided the details of the entire operational process in
order to verify the formal, performance and technical
material qualities, time and costs for execution.
Before restoration there was the existing aluminium
curtain wall in a stick system with a total surface of approx. 10,800 sqm. The curtain wall is based on a stick
system in anodised aluminium in modules 2850 mm
in width and 1854 mm in height, completely glazed in
opening parts measuring 1900 mm with a chamber and
fixed parts measuring 950 mm. In addition, two bands of
skylights, above and below, constructed in opaque panels
like sandwiches formed with an exterior pane of glass and
an internal sheet in galvanised steel, all linked around the
perimeter by a rubber gasket and weather strip.
Jury judgement: The Pirelli skyscraper is a symbol of modern architecture created by the famous Gio Ponti in the
fifties. The building was partly damaged by an aeroplane
accident. There has been a special debate in Italy on the
methodology for restoration and conservation. The Region of Lombardy decided to proceed using ‘anastylosis’,
a reconstruction technique based on careful study and
Aluminium Award
Private Houses
Collective Housing
Utility Buildings
Public Buildings
Historical Buildings
Winner
Country
Maison à Fleury-les-Aubrais
France
Warehouse Nautilus, Scheveningen Netherlands
Café Mayer, Vöcklabruck
Austria
Rich Mix Bethnall Green, London
Pirelli Skyscraper, Milano
UK
Italy
Photos: EAA
Pirelli Building
Architects: Renato Sarno Group and Corvino+Multari
mensuration using original architectural elements where
possible. This building is the first example of applying
this conservation technique to curtain walling.
Furthermore, new performance standards made it
necessary to test new possibilities in the use of aluminium. They succeeded in restoring the aluminium where
it could be recovered (disassembly, cleaning, re-anodising and re-assembly of the elements). For parts which
were destroyed new ones had to be made with the same
morphology. This project truly restored as much of the
original material as possible as well as meeting the highest of modern building standards.
©
Special Prize
Cladding & Roofing
Doors & Windows
Curtain Walls
Jury Prize
Honourable Mention
Winner
BMW-Hochhaus, München
Borgo Wührer Village, Brescia
Country
Germany
Italy
Plaza 14 Business Centre, Zaragoza
Spain
San Ponziano Library, Lucca
Casino Kursaal Oostende
Italy
Belgium
The prize winners of the European Aluminium in Renovation Award 2007
ALUMINIUM · 1-2/2008
77
MARKETS AND TECHNOLOGY
Award in the Category Public Buildings
London, England
Aluminium products: Kalzip
Rich Mix Bethnall Green
Architect: Penoyre & Prasad
Project: An East End of London property that has been
transformed by the use of external aluminium louvres
whilst still maintaining its original facade. Not only has
the property been totally transformed but also the internal
space has been given a new lease of life by controlling
solar gain.
Jury judgement: The minimal intervention of the existing building by the use of coloured aluminium louvres
has created a completely new and modern view of this
complex. It is not only an architectural feature but also a
way to control the solar heat. Together with the chosen
colours the facade gives a vivid and variable impression.
Special Prize for Cladding and Roofing
BMW Hochhaus
Architect: eS 21 engineering & structure
Project: Aluminium cladding of the pre-stressed concrete
king pins. One has to be able to open up any such cladding so that the pre-stressed concrete construction can
be inspected in future. In addition, because there were
only a few points suitable for attaching the large-format
cladding components, the components had to have a low
structural weight while at the same time the structure had
to have a high stiffness. Because of the special geometry, it
was necessary to manufacture curved aluminium ribbed
shells with a bi-directional curvature. One has to imagine
a 3D free-form shape such as in car body manufacturing
but significantly larger. Other challenges were the erection at a height of 100 metres under difficult conditions,
the high degree of precision and the automation of the
manufacturing using welding devices.
Munich, Germany
Aluminium products: Otto Valenta
Jury judgement: This refurbishment shows an innovative
way to use aluminium. It is intelligent cladding, completely prefabricated and put into position in short time.
Special Prize for Doors & Windows
Borgo Wührer Village
Architect: Studio Racheli Architetti
Project: Recovering the area of the former Whürer factory,
even the substitution of the windows required particular
attention. The original elements, made of iron and glass,
were substituted with a personalised version of an existing aluminium frame system. The use of aluminium gives
remarkable advantages in the maintenance, non-deformability as well as in thermal and acoustic insulation. The
substitution of the windows improved the thermal and
energy-saving performances in the different spaces of the
historical factory. On the other hand, it allowed the keeping of the continuity of language present in the images of
the industrial complex, which was built in the 1880’s.
Jury judgement: The intervention is dedicated to the restoration of an existing industrial complex now converted
into mixed commercial use. The design respected the existing arrangement of windows also tackling the new re-
78
Brescia, Italy
Aluminium Products: Metra
quirements dictated by new energy standards. All of this
is done in relation to the significant variety of the existing
window frames. This required research of new profiles in
respect of the 19th century industrial structures.
N
ALUMINIUM · 1-2/2008
ENVIRONMENT AND ECOLOGY
Friedensnobelpreis für IPCC
Ein Quäntchen Ehre auch für Halvor Kvande
Halvor Kvande, der im Bereich
Primary Production bei Hydro
arbeitet, forscht seit vielen Jahren,
um das Elektrolyseverfahren für
Aluminium zu verbessern. Seine
Forschungsarbeiten zielen unter
anderem darauf, die Emissionen
von CO2 und perfluorierter Kohlenwasserstoffe (PFC) zu reduzieren. Diese Arbeit war Teil eines
der letzten Berichte des U. N.
Klimapanels IPCC, das zusammen
mit dem ehemaligen US-Vizepräsidenten Al Gore den diesjährigen
Friedensnobelpreis erhielt.
Kvande, der in Oslo arbeitet, ist einer
von zahlreichen Forschern aus über
130 Ländern, die ihren Beitrag zu
den letzten IPCC-Berichten geleistet
haben. Er ist überzeugt, dass dieser
Preis das öffentliche Bewusstsein verändern wird, und fügt hinzu: „Er ©
Nobel Peace Prize for IPCC
A small slice of the glory also for Halvor Kvande
Halvor Kvande, who works in the
Primary Production sector of Hydro, has been working for many
years to improve the aluminium
electrolysis process. Part of his
work includes trying to reduce
CO2 and perfluorocarbon (PFC)
gas emissions to the atmosphere,
and has been included in one of
the recent reports from the Intergovernmental Panel on Climate
Change (IPCC), which was co-winner of the Nobel Peace Prize for
2007, along with former U. S. Vice
President Al Gore.
Kvande, who is based in Oslo, is
among the many researchers from
more than 130 nations who have con-
tributed to the writing of these recent
IPCC reports. “I strongly believe this
prize will make a difference,” he says.
“And it can also be seen in light of the
ongoing debate and the need for political leadership. Some activists and
scientists link next year’s presidential
election in the US to the destiny of
global environment”.
Better control of the
production process
PFC gases are not made naturally,
Kvande points out, and their major
source is primary aluminium production. They contribute to global
warming, as they prevent the infrared
heat loss from the earth passing ©
www
aluminiumePaper.com
Please be our guest
and discover the benefits of the
ALUMINIUM-ePaper yourself in a
free three-month trial:
•
accessible at least a week before
the printed edition
•
available from any location
•
simple download
•
keyword researches
•
linked list of contents
•
direct contact with advertisers
ALUMINIUM · 1-2/2008
79
U M W E LT U N D Ö KO LO G I E
Bessere Kontrolle des
Produktionsprozesses
Perfluorierte Kohlenwasserstoffe entständen nicht natürlich, unterstreicht
Kvande, die Hauptquelle für diese
Gase sei die Primäraluminiumherstellung. Sie tragen zur globalen Erderwärmung bei, da sie verhindern,
dass die Erdwärme in die Atmosphäre
abgegeben wird.
Die Produktion von einem Kilogramm Aluminium hat gegenwärtig
eine Emission von etwa vier Kilogramm CO2 zur Folge. Viele Aluminiumhersteller in der Welt verursachten
noch höhere Emissionswerte, sagt
Kvande. „Vor 15 bis 20 Jahren war
man allgemein der Auffassung, dass
die Anodeneffekte in den Elektrolysezellen notwendig waren, damit diese
gut funktionierten. Heute wissen wir,
dass dies eher ein Zeichen für den
schlechten Betrieb der Zellen ist. Die
gesamte Branche ist sich darüber im
Klaren und Anodeneffekte werden
nun als Abweichung betrachtet, die
durch präziseres und kontrolliertes
Befüllen mit Aluminiumoxid vermieden werden können“, erklärt er.
Durch eine bessere Kontrolle des Produktionsprozesses sind diese Emissionen mittlerweile beträchtlich reduziert worden. In Norwegen sei es der
Aluminiumindustrie gelungen, den
Ausstoß von Treibhausgasen im Zeitraum 1990 bis 2005 um mehr als 55
Prozent zu verringern, so Kvande.
Dilemma
„Wir müssen uns jedoch das Dilemma
eingestehen“, meint er und verweist
darauf, dass die steigende Nachfrage
nach Aluminium zu noch höheren
CO2-Emissionen führen kann, auch
wenn diese pro produzierter Einheit
zurückgehen.
In den vergangenen Jahren hat
die weltweite Aluminiumindustrie
ihre Produktionsmenge beträchtlich
gesteigert – um ganze 31 Prozent
in den Jahren 2000 bis 2005. Die
Treibhausemissionen konnten im
gleichen Zeitraum um sechs Prozent
verringert werden. Darin enthalten
Foto: Kåre Foss
kann auch im Licht der gegenwärtigen
Debatte und des Bedarfs für politische
Entscheidungen gesehen werden. Einige Aktivisten und Wissenschaftler
verbinden die Präsidentenwahl 2008
in den USA mit der Entwicklung der
globalen Umwelt“.
Halvor Kvande hat dazu beigetragen, das
Elektrolyseverfahren für Aluminium zu
verbessern
Hydro researcher Halvor Kvande has been
working for many years to improve the
aluminium electrolysis process
sind die Emissionen aus der Bauxitgewinnung, der Herstellung von Tonerde, der Anodenproduktion sowie
aus dem Schmelzen und Gießen von
Aluminium.
Laut dem Londoner International
Aluminium Institute (IAI) ist die Reduktion um sechs Prozent die Folge einer 56-prozentigen Reduktion
der Emissionen von perfluorierten
Kohlenwasserstoffen und einer 12prozentigen Reduktion anderer
Emissionen pro Tonne produziertes
Primäraluminium. „Für uns heißt die
Herausforderung, diesen Trend weiterzuführen“, so Kvande.
N
through the atmosphere.
Production of one kilogram of aluminium now causes about four kilograms of CO2 emissions. Many aluminium producers around the world
produce even higher emissions than
this, Kvande comments. “About 15
to 20 years ago it was generally believed that the anode effects in the
electrolytic cells were necessary for
good cell operation. Today we may
consider them to be a sign of poorly
operated cells. The entire industry is
now aware of this, and anode effects
are now considered as a deviation,
which can be prevented by more precise and controlled feeding of aluminium oxide”, he says.
Through better control of the production process, these emissions have
actually been considerably reduced. In
Norway, the aluminium industry has
been able to reduce its specific greenhouse gas emissions by more than 55
percent over the period 1990-2005.
Dilemmas
“We have to be honest about the dilemmas,” Kvande says, referring to
how increasing demand for materials
can lead to even higher CO2 emissions, despite lower emissions per
produced unit.
In recent years, the world’s aluminium industry has increased its total
output considerably – as much as 31
percent from 2000 to 2005, while its
total greenhouse gas emissions were
reduced by six percent over that period. This includes emissions for bauxite mining, alumina refining, anode
production, aluminium smelting and
casting.
According to the International
Aluminium Institute (IAI), the six percent reduction is the result of 56 percent reduction in PFC emissions and
12 percent in other direct emissions
per tonne of primary aluminium produced. “Our challenge is to continue
this trend,” Kvande says.
N
60.000 Literaturangaben zum Thema Aluminium
Kontakt: [email protected]
80
ALUMINIUM · 1-2/2008
Important information for
all exhibitors at
ALUMINIUM 2008
in Essen
OFFICIAL MEDIA PARTNER
Giesel Verlag
GmbH • Postfa
ch 12 01 58 •
+
%.
.
.
'
'
)%"&")%
$$)%
30907 Isernh
agen • Deuts
che Post AG
• PVST H 41947
.A@
)@A
<:8
C:@:
>@A
:
:0?
@
@C
:AB
.A
.
AL MEDIA PARTNER
OFFICIAL
OFFICIA
• Entgelt bezah
lt
'
*
*
$)%"& ,*
")%
89
A
8@8
8<
@
@
:
+8
'8@
@>8@
&
@<<B
:@ ?@8
:
> (
< B
89
&
@<>A
A<
:
9
OFFICIAL
Aluminium Praxis and APT Aluminium News have been jointly
nominated the exclusive official newspapers for German
and English speaking participants respectively,
at ALUMINIUM 2008 in Essen.
MEDIA
PARTN
1)4'3
*/',')/
1/8=
,46'6)./
8+)896'1
564*9)87
$ $3
:/6432+
;/37!
)4386' 38
)8
,46"%
&
,, ,*
%98?@AA
(G@;8@
8
@><AA"
,A
A?8@7
:
1@@H(
A#(
@><AAD
, :201"/1"
0,4"&1"/
%1
!&$)& % &"/01"%1"&+
8; 9:
<
<A8B@A
+8@ A<
8<
8
8
9 <B
!#
(!
#%
!
&%
! %&
51!"/)"
5
%98?@AA
(G
(G@;8@
8
@><AA"
@>
,A
A?8@
A?8@7
:
1@@ (
1@@H
A#(
@ AAD
@><
8;
&"/01"%
B8
:
&
A
1"&+
:2
<@G
?8
< )8A8
@
01"/1"51
)& %!
8
B
:8 A@
@
8
72!&"+1
!"/)"!&$A @ !&"
"&+:201"
<B
/9
:@@8
8
:/1"51
8
-1&(%&"
9 @8<
>
2+!
/01"
474&/
=*647
-.1&
+884-64
'*(20
;
'7-14('
*5
9*&/61'192/3
.*4
/92
)425'3
=
)*0&1) 21,2.1,
+24
192/3/9
0&6*4.&/5 '7./).1,
22'0+
7
3+;'98
9.//-*
4/364'
-.
/3
1&
*7
5'&5*
.5/11
0*6&/5
)*0&1)
/843/3:+
56&;56
78/-'8+
.=*645
4;+6+*
421,
+24&6/*&
72+18+6
51'38/3
56&)*
#
(&)*
024*
6-*46978
&.40&1
47+119
&1)
645+'3
'192/3/9
2+-&
251'38
/(2
5&.)
7
/-.+6+
1+)86/)/8
=
)4787,4
6./3+7
)2*&+2*
+
72+18+67
,/
+ )0,
(+,4+ - ,# %&
) , &0
0 %&+
#"
#
Actual schedule:
B@
$#4
@
>
B
?
>8@
$#4
8
8@
>
?
>
78@*
*
8
8;:@$#4
78@
@
@$#4
8;:@
#
:A @
:A
#
BHA
BHA
%
!%
%
(%'
%%&
(
%&
8@A@ %%!
""
A?@ 8AA
& !
'*
!
>@A
@
9A8;
98AA
:
+8
-&/(2
)*0&1 5**556421,0
).1.1&+24 *6&/5
1*:6
ER
#*+*+
/
(
8@8@>
@9
:
9@<;@:#:8A
@8@
:A
@
:
:B@><
9
:)8
@
#;@8<A8
@ 8A$8AA;
6@>A;;:
"
<
#
B
:
8@#
8@
A@>
'8AA8:
>
898@H
:
;A<
<
:@;@:$
<8
8
8@:
-8
8
8<
:@
@(9H:
::
@
@:
A
:
B
@<A
<$A?
+*/
"*
!&3"
-"/ *&+ /0&#6&+$ &+1, ,-
,/ *"1)0
"/1%01,
01&)&7" +! //" &
-/,#&10
-&1)&7"
+! &+!2))&,+1,++"0 ,#01
"")&#&10
2"! $/,4 ,+ %&+0 ,+1&
01/&)&71
+
1% %&/
0*" -11 &,+ #,)),40
.&+$1,)!/
*+
"-,/1"/0 &, 1%" "/+ 0 &+ - 1%"
8%&+0
+ ,/
"
,+,*6
02*"0*
8, #,/
,+
,01,
6"/0)) 1%" +"51 1"+-)20
1,++"0 ,# #&10*&))&,+
0
0%,2)!01 "*"1)0!"*+! -21+! ++2) 01"") ,21
6 01/,+
0"
&
9
&+1, 2+
++ ,26&+$
-"/ #1"/
&10-/"+ ,+1/,))&+$01("&+ 11%&06"
/
ALUMIN
IUM
%
;*&45
#,/ 0*")1"/0
#1"/
4,2)!#,
/ "1%")"0 1%&0 6"/
1&3" 1,
0&++,3
),0"
)"010,* +! -/"3"+1
1
",#
*&))&,+1,++ +"01&*1"!
"0,#+"4
&16#/,*
-
01/
+"51 14, 1&+$2-,3"/1%"
1&3")6,- 6"/0 8 * /") 1&*&01& #,/
&2*-/&
"011%" )2*&+
1%"60%,
3"/
2)! /"1&+1% 6)"01
!2" 1,
1%" ),02 &0)"3")
&, 4%,
/"09 0&!
)2*&+2* )0, %"!0 )&01" !
1!,/ % ,/- ,# %&
+
,# ) ,+3"01*"+
10
*&)) *&))&,+ 1, &+$ -/,! &,+ &+ 2-$/!
2
"+"/$6 20" 10 +! /"!2 &+$
401"4
$/""+%,
20" $0 "*& 1"/ +!
"$&++&+
$1,-6 00&,+0&0
,##
% )
Aluminium Praxis, has been for many years the official media partner and since 2006 the official Fair Newspaper.
p p
It will publish again the Fair Newspaper for the German speaking audience in September together with
of the forthcomingg ALUMINIUM 2008 in Essen. Due to popular demand, APT Aluminium News together
will publish a Fair Newspaper edition for the English speaking participants and visitors from
with
all over the world for the first time.
So every participating exhibitor, will benefit from:
• Print run of 20,000 copies – instead of 8,000 –
• Direct distribution to all visitors from 2006
• Direct distribution to exhibitors in 2008, ahead of the Fair dates
• Distribution to hotels in Essen hosting guests as
official Fair residence
• Distribution to visitors at the entrance as well as inside
the Fair grounds by our designated hostesses
• Display on the Technical Press stand
• Special reference from the organisers
With your client target group under one roof at ALUMINIUM 2008, your
advertisement with our Fair Newspapers will be reaching effectively
every present and visiting potential customer to your business!
As you may appreciate, we are constantly working in improving our
services to you while keeping costs steady.
Yes, we are interested to participate in your Fair Newspapers.
Please get in contact with us as follows:
Company
Last and First Name
Address
Address
Special rates for series advertising with our ALUMINIUM all over
the World journals as per the 2008 media kit will be applicable.
ALUMINIUM 2008 is approaching fast. We would be delighted to
offer our insight to your specific marketing requirements for a most
successful and cost effective advertising campaign during this unique
event.
To take best advantage of potential benefits, you may fill in and send
to us the enclosed form or alternatively call
Telephone
Fax
Email
Remarks
Stefan Schwichtenberg on: +49-511/7304-142
or your area agent.
Sincerely,
Your ALUMINIUM 2008 Fair Newspaper Team
Giesel Verlag GmbH
Postfach 120158
D-30907 Isernhagen
Tel. +49 511 7304-142
Fax +49 511 7304-157
[email protected]
www.giesel.de
U M W E LT U N D Ö KO LO G I E
BDI-Studie zum Klimaschutz
CO2-Reduzierungspotenzial in NE-Branche nur
zu Lasten der Wettbewerbsfähigkeit möglich
Vor dem Hintergrund der Klimapolitik der Bundesregierung hat
der Bundesverband der Deutschen
Industrie (BDI) e. V. McKinsey
& Company beauftragt, Kosten
und Potenziale zur Reduzierung
von Treibhausgasemissionen zu
untersuchen. An der Erarbeitung
der gleich lautenden Studie haben
mehr als 70 Unternehmen und
Verbände in Deutschland mitgewirkt. Die Studie identifiziert
technologische Ansätze zur Vermeidung von Treibhausgasen und
deren Kosten aus Entscheidersicht
in den Sektoren Energie, Industrie,
Gebäude, Abfall- sowie Landwirtschaft und Transport.
Die WVM Wirtschaftsvereinigung
Metalle e. V. hat innerhalb des Sektors
Industrie in einer speziellen Arbeitsgruppe „NE-Metalle“ gemeinsam mit
Mitgliedsunternehmen und McKinsey Vermeidungshebel und die damit
verbundenen Kosten für die gesamte
NE-Metallbranche identifiziert und
bewertet. Ergebnis der Arbeitsgruppe: Bis 2020 können durch Effizienzverbesserung bei der Wärmebehandlung und gradueller Optimierung in
der Elektrolyse etwa 1,3 Mio. Tonnen
CO2-Äquivalente gegenüber 2004 reduziert werden. Bis zum Jahr 2030
sei sogar eine Reduktion um 1,6 Mio.
Tonnen möglich. Davon entfallen
rund 1 Mio. Tonnen auf die Wärmebehandlung und 0,5 Mio. Tonnen auf
die Elektrolyse. Effizienzverbesserungen durch den Einsatz energiesparender Querschnittstechnologien wie
lastgeregelte elektrische Antriebe und
Motorsysteme sowie Raumheizung
und -beleuchtung spielen nur eine
untergeordnete Rolle.
Bei steigender Produktion kann
durch die Maßnahmen das Emissionsniveau von 15 Mio. Tonnen CO2Äquivalente bis 2030 in etwa konstant
gehalten werden. Die Maßnahmen
beruhen auf der Abschätzung, welche Durchdringungsrate heute bekannte Energieeffizienztechnik 2020
ALUMINIUM · 1-2/2008
bzw. 2030 haben wird. Bei der Wärmebehandlung ist eine vollständige
Durchdringung bei Schmelz- und
Homogenisierungsöfen bereits 2020
wahrscheinlich. Insgesamt können
damit rund 15 Prozent des für diese
Produktionsprozesse heute benötigten Energiebedarfs eingespart werden. In der Elektrolyse ist erst 2030
mit einer vollständigen Umsetzung
der Maßnahmen zu rechnen, wodurch etwa fünf Prozent des heutigen
Stromverbrauchs eingespart werden
können.
Allerdings entstehen bis 2020 für
Maßnahmen bei der Wärmebehandlung und Elektrolyse Vermeidungskosten von mehr als 20 bzw. 50 Euro
je Tonne CO2, so dass die Maßnah-
„Bis 2020 können durch Effizienzverbesserung bei der Wärmebehandlung und
gradueller Optimierung in der Elektrolyse
etwa 1,3 Mio. Tonnen CO2-Äquivalente gegenüber 2004 reduziert werden“
men aus Entscheidersicht unwirtschaftlich sind und die internationale
Wettbewerbsfähigkeit beeinträchtigen würden. Auf den längeren Zeitraum bis 2030 berechnet fallen nur
die Kosten für Maßnahmen in der
Wärmebehandlung auf unter 20 Euro
je Tonne CO2. Noch mehr als diese
direkten Kosten wird die internationale Wettbewerbsfähigkeit der
NE-Metallindustrie durch steigende
Strompreise gefährdet. Denn allein
solche Maßnahmen in der Energiewirtschaft, die für einen Preis von bis
zu 20 Euro je Tonne CO2 verwirklicht
werden, erhöhen den Strompreis um
Anzeige
www.inotherm-gmbh.de
weitere acht Euro je Megawattstunde.
Die WVM betont daher, dass bei den
Maßnahmen besonderes Augenmerk
auf die Erhaltung der Wettbewerbsfähigkeit deutscher Unternehmen,
vor allem bei energieintensiven Industrien, gelegt werden muss. Die
Produktion am Standort Deutschland
kann nur gesichert werden, wenn die
Kosteneffizienz das entscheidende
Kriterium für die Auswahl und den
Zuschnitt der Klimaschutzmaßnahmen ist. Hier sind nicht zuletzt sektorübergreifende Rückwirkungen zu beachten, z. B. steigende Strompreise.
Die Akzeptanz der Klimaschutzpolitik wird davon abhängen, welche
Belastungen der Verbraucher zu tragen hat. Hierzu bietet die BDI-Studie
vielfältige Ansatzpunkte. Politisch
kommt es bei der Umsetzung der
europäischen und deutschen Klimaund Energiebeschlüsse vom Frühjahr
bzw. Sommer 2007 darauf an, die
Minderungslasten fairer als bisher zu
verteilen und am Kriterium der Kosteneffizienz auszurichten. So sollten
erneuerbare Energien dort ausgebaut
werden, wo die Potenziale noch weitgehend unausgeschöpft sind und der
Ausbau mit besonders geringen Kosten verbunden ist. Vor diesem Hintergrund liefert die vorgelegte Studie im
Sinne einer „Preisliste“ (Kosten aus
Entscheidersicht) hierfür fundierte
Orientierungshilfen.
WVM-Kontakt:
Tel: +49 (0)30 726 207 198
[email protected]
82
CO M PA N Y N E W S W O R L D W I D E
Photo: Rio Tinto Alcan
Aluminium smelting industry
MMC, Chalco and Binladin
firm up Saudi smelter plan
MMC Corp., Aluminium Corp. of China (Chalco) and Saudi Binladin Group
(SBG) have firmed up plans to build
a 1m tpy aluminium smelter in Saudi
Arabia. The three companies signed
an agreement to build the US$3bn
smelter in Jazan Economic City (JEC).
The companies will form joint venture company Sino-Saudi Jazan Alu-
UC Rusal completes five-year casthouse revamp
In November UC Rusal completed its
casthouse modernisation programme
at four smelters, increasing the share of
value-added products to 50% of total
production volume. The projects began
in 2002 and cost about US$130m. This
was aimed at increasing the diversity of
casthouse products, which now include
rolling slabs, extrusion billets, silicon alloys for automotive uses, highly pure alloys for the electrical engineering industry and rolled wire. The four smelters
involved are: Sayanogorsk, Krasnoyarsk,
Bratsk and Novokuznetsk. The modernisation programme enables them to
produce more than 250 new alloys, to
enter new markets and to significantly
increase their customer base.
Feasibility study on
metals complex in Kyrgyzstan
After its failure to accomplish a similar
project in neighbouring Tajikistan, UC
Rusal has resumed exploring opportunities for building an energy and metals
complex in Kyrgyzstan. In Kyrgyzstan,
which has vast hydropower potential,
Rusal hopes to create an industrial cluster comprising electricity and aluminium
production facilities. With a new feasi-
ALUMINIUM · 1-2/2008
bility study, Rusal is effectively revisiting
a plan dating back to 2004 when the
then Kyrgyzstan president gave the
green light for the construction of an
aluminium smelter and electricity plants.
That scheme had envisaged building
two hydroelectric power stations (Kambarata 1 and 2) on the Naryn river and
using locally available nepheline instead
of bauxite ore as raw material for aluminium production. Project costs were
roughly estimated at US$2bn.
Point feeder
installation at KrAZ completed
In November, UC Rusal’s Krasnoyarsk
Aluminium Smelter completed the
installation of automatic alumina pointfeeders. KrAZ is the first aluminium
smelter in Russia based on slotted anode
technology equipped with automatic
point feeders. The project started in
2004 and cost over US$38m as part of
the strategic programme of ecological
modernization of KrAZ. Today, all its
1954 electrolytic cells based on Soderberg technology are equipped with automatic alumina point feeders which has
reduced fluoride emissions by 10%, tarry
substances by 3% and dust by 30%.
minium Ltd to undertake the project,
with Chalco and a Saudi consortium,
including SBG, each taking a 40%
stake in the new company. MMC will
hold the remaining 20%. The group
also intends to build a 1,860 MW
power plant at US$2bn to power the
smelter. The shares held by MMC, by
the Saudi consortium including SBG
and by Chalco will be in proportions
of 50:30:20 percent. Construction of
the smelter and power plant is scheduled to begin during the second half
of 2008 and be completed in 2012.
Chalco and its affiliate China Aluminium International Engineering
Co. will provide alumina technology
for the smelter.
Indian aluminium industry to receive huge investment by 2012
In November Indian aluminium industry announced it expected to invest Rs1,000bn (US$25bn) over the
next five years. Installed capacity will
go up from the existing 1.1m tpy to
4m tpy. Consumption of aluminium
in India is growing at 18% per year
compared with the global 4.4%. By
2015, Indian aluminium use will grow
to 2.75m tpy.
CVRD gets new name
The Brazilian Companhia Vale do Rio
Doce (CVRD) has launched a change
to its short name. Previously known
by its initials, CVRD, the miner will
now go by Vale.
New Indian smelter
expected online by end of March
Vedanta’s new 500,000 tpy smelter in
the eastern Indian state of Orissa is
expected to produce its first aluminium by the end of March 2008. The
first 250,000 tpy stage of the smelter
should be mechanically complete in
February, with the first production in
the following month. The smelter will
be fed with alumina from a new 1.4m
tpy refinery, also in Orissa. The alumina refinery has started production,
although Vedanta has encoun- ©
83
CO M PA N Y N E W S W O R L D W I D E
tered problems getting government
approval for mining bauxite in the
Niyamgiri hills.
Dubal-Mubadala joint venture
to build smelter in Algeria
A pre-feasibility study on a major aluminium smelter in Algeria initiated by
Emirates Aluminium is progressing
well, as the company has showcased
the proposed model of the project.
The smelter will be built in partnership with Algerian state-owned oil
and gas company Sonatrach in the
new industrial and port zone of BéniSaf in north-western Algeria. The proposed smelter will have an initial capacity of 700,000 tpy with the option
of doubling to 1.4m tpy in time. The
smelter comprises two potlines, an
anode carbon plant, a casthouse, a sea
port for major raw material imports
and finished product export, bulk
raw material unloading, storage and
handling facilities, a storage yard for
finished aluminium products, a power
plant of 2,000 MW (combined cycle,
gas-fired) linked to a water desalination plant and auxiliary infrastructure.
The Béni-Saf aluminium smelter will
be built using highly-efficient, environment-friendly technologies, and
the smelter will use Dubal’s advanced
DX reduction cell technology. The
production of primary aluminum has
the potential to initiate a downstream
transformation industry with the capacity for many small- and medium
sized businesses in Algeria to evolve
into sustainable operations.
Gulf investment company
eyes greenfield project in India
Ras-Al-Khaima Investment Authority
(Rakia), a provincial investment company of the United Arab Emirates, is
planning to invest US$2bn in a Greenfield integrated aluminium complex in
the India state of Andhra Pradesh. Rakia has signed an agreement with the
Andhra Pradesh Mineral Development
Authority for bauxite reserves to feed a
planned facility in Visakhapatnam. Rakia is considering a 1.5m tpy alumina
refinery and a 350,000 tpy smelter.
84
ENRC opens Kazakh smelter
Eurasian Natural Resources Corp.
(ENRC) has inaugurated its aluminium smelter in Pavlodar, Kazakhstan,
with initial capacity of 62,500 tpy,
planned to increase to 125,000 tpy
in 2008 and 250,000 tpy by 2011.
The project was completed ahead of
schedule. The smelter comprises two
potlines, a casthouse and anode production. Power is supplied through a
sub-division of ENRC’s energy division.
Nalco moves ahead with
big Indonesian smelter project
India’s state-owned National Aluminium Corporation (Nalco) agreed
to invest US$3bn in a 500,000 tpy
aluminium smelter in the Indonesian
province of Sumatra. After signing an
MoU due in January, Nalco will conduct a feasibility study on the project.
Nalco will build a 250,000 tpy smelter
in the initial phase and ramp up to
the full 500,000 tpy later. The exact
timeline for the plant has not been
released. Alumina and other raw materials needed for the smelter will be
shipped from India. The project includes the construction of a coal-fired
power plant, to produce 3,250 MW of
electricity in the first phase, increasing
to 5,250 MW eventually. The power
plant will need 4.5m tpy of coal.
Alcoa and Yangquan Coal
team up for aluminium and
electricity project
Alcoa has entered into a strategic partnership agreement with Shanxi-based
Yangquan Coal Industry (Group) Co.
to develop an aluminium and electricity project in Shanxi Province. The
partnership was inked in Taiyuan City
in November, and the two companies
discussed financing, management and
both upstream and downstream development for a future project. Yangquan
Coal is a key coal producer in Shanxi
Province that has long adopted meas-
Rio looking at Emirates smelter with Adbic
Rio Tinto Aluminium has formed an alliance with Abu Dhabi Basic Industries
Group (Adbic) to develop a world-class
aluminium smelter project in Ruwais, Abu
Dhabi. The project has no cost or timetable yet and remains in the planning phase,
with only pre-feasibility studies by Bechtel
Corp. completed to date. Local reports
suggest a 550,000 tpy smelter at an initial
cost of about US$5bn. Construction could
start in 2008, with production in 2011. The
smelter is the second planned for the largest of the United Arab Emirates.
Rio eyes greenfield
smelter in Cameroon
Besides, Rio Tinto Alcan has signed an
amended agreement with the government of Cameroon on water resources for
a new 1,000 MW hydro power system in
the West African country. This paves the
way for studies on a potential 400,000 tpy
greenfield smelter. Technical studies are
complete and an energy contract is at the
negotiation stage. A go-ahead decision on
the smelter project is expected by the end
of 2009. The greenfield project is separate
from a previously-agreed brownfield
expansion of the existing Edea smelter, a
joint venture between the government
and Rio. The Edea brownfield project, lifting capacity from 90,000 tpy to 300,000
tpy, continues to make progress.
US$8m AP50 fund launched
Rio Tinto Alcan has launched an US$8m
fund in a move to promote competitiveness among suppliers and contractors
developing of its AP50 smelting technology in Quebec’s Saguenay-Lac-Saint-Jean
region. The fund, to be managed by the
Fonds de Solidarité des Travailleurs du
Quebec (FSTQ), meets one of Alcan’s commitments to the government of Quebec in
December 2006 to invest US$2.1bn in the
Saguenay-Lac-Saint-Jean region over ten
years. Rio is proceeding with the construction of a 60,000 tpy US$550m pilot plant
known as Complexe Jonquière to develop
new smelting technology.
ALUMINIUM · 1-2/2008
CO M PA N Y N E W S W O R L D W I D E
ures to promote its non-coal operations, and is also backed by abundant
bauxite and energy resources in the
province. Alcoa has also expressed
its confidence that the Alcoa-Yangquan Coal tie represents a win-win
situation for both companies, with
Alcoa’s advanced technology and
management expertise complementing its partner’s abundant resource
reserves. Shanxi Province contains
approximately 42.11% of China’s total bauxite reserves, much of which is
due to be prospected and developed
in the near future.
N
Bauxite and alumina activities
MRL will purchase the 33% stake China Minmetals has in Guangxi Huayin
at 855m yuan (US$115m) from parent
company China Minmetals. Minmetals and Chalco each have a 33% stake
in the project, and Guangxi Investment Group Corp. owns the remaining 34%. The stake purchase forms
part of Minmetal’s plan to transfer its
alumina and aluminium assets to subsidiary MRL. Construction of Guangxi
Huayin started in 2005.
Photo: AOS
Australian bauxite
exploration agreement signed
Dubai investment group
buys German speciality
alumina producer
Dubai International Capital (DIC),
which is the private equity arm of
Dubai Holding, acquired the German
speciality alumina producer Almatis.
The company is headquartered in
Frankfurt and has eight manufacturing sites in Germany, the Netherlands,
the USA, Japan, China and India. DIC
paid more than US$1bn for this deal. It
has plans to increase capacity by 20%
to around 750,000 tpy by 2010 and is
targeting an aggressive expansion into
developing markets such as the Gulf
region, India and Brazil. The company’s growth prospects are robust, as
the majority of future growth in the
alumina refractory market is driven by
global steel volumes produced. DIC is
acquiring Almatis from funds controlled by Rhone Capital and Teachers’
Private Capital, the investment arm of
the Ontario Teachers’ Pension Plan.
a total capacity of 8.4m tpy of alumina
and 0.65m tpy of aluminium hydroxide, by 2015. The decision to build
these plants follows a government
plan to exploit and process bauxite in
the Central Highlands through 2025.
The plants will cost US$11.8bn15.6bn. At least US$47.5m would be
spent on completing the geological
survey, US$9.9-13.7bn for building,
exploiting and processing plants and
US$1.9bn for building infrastructure.
The company developing the project
will be equitised, with the Vietnamese
government responsible for management. A dedicated port that can load
vessels with 50,000 tonnes of product will be built in central Binh Thuan
Province to develop the industry in
the Central Highlands and Southern
Central regions. Environmentally
friendly technology will be used to
exploit 5.5bn tonnes of bauxite in the
Central Highlands provinces.
Guangxi Huayin to start
trial production
Vietnam to build seven alumina
processing plants by 2015
Vietnam will build seven alumina
refineries and a bauxite-aluminium
processing complex, which will have
ALUMINIUM · 1-2/2008
Guangxi Huayin Aluminium Co,
whose backers of the 1.6m tpy alumina refinery include Chalco and China
Minmetals Corp., announced trial
production to start in December 2007.
Hydro is entering into a joint venture
with the Australian mining company
United Minerals Corporation (UMC)
with the intention of recovering bauxite and producing alumina in Kimberley, Western Australia. The agreement
gives Hydro a 75% share in the partnership, which must first finish the
ongoing investigations by the end of
2009 within a total cost framework of
NOK40m (US$7.4m). If the investigation confirms commercially recoverable deposits the partners will consider
setting up a mining company and an
alumina company, which may then
result in an investment decision. A
possible bauxite and alumina project
in Australia is in line with Hydro’s
strategy to increase the company’s
primary aluminium production and
step up its production of alumina.
MRN reaches full
bauxite mining capacity
Brazilian bauxite miner Mineração
Rio do Norte (MRN) has reached its
full capacity production of 17.8m tpy.
MRN now expects to stay at this level
for the next 30 to 40 years. The company in Para state, north Brazil, has
gradually increased its capacity from
16.3m tpy three years ago due to process improvements. MRN is majorityowned by CVRD, followed by Alcan,
Alcoa, Norsk Hydro, CBA and BHP
Billiton. MRN may start mining at a
new mine site in order to ensure continuity of its current production levels. The new mine site could involve
a US$100m investment.
©
85
CO M PA N Y N E W S W O R L D W I D E
Glencore may supply Century
with 2.3m tonnes of alumina
Vietnam licences
US$490m bauxite project
Century Aluminum Co., Monterrey,
California, and Glencore International
AG, Zug, Switzerland, have tentatively agreed on a five-year deal for the
supply of 2.3m tonnes of alumina for
Century’s smelters. A final purchase
agreement is pending, according to a
filing made by Century with the U.S.
Securities and Exchange Commission.
Under the proposed deal, Glencore
would supply Century with 290,000
tonnes of alumina in 2010, 365,000
tonnes in 2011, 450,000 tonnes in
2012 and 2013 and 730,000 tonnes in
2014. The price of the alumina will
be indexed to the price of aluminium
as quoted on the LME. Glencore is
Century’s largest shareholder, owning
approx. 28.6% of the company’s outstanding shares. In addition to being
a supplier, the big Swiss trader is also
a Century customer and a counterpart
to its hedges.
The Vietnam National Coal and Mineral Industries Group has been awarded a government licence to develop a
US$490m bauxite mining project in
Lam Dong province in the country’s
central highlands region. The company is aiming to produce about 600,000
tpy of bauxite with a start-up date in
2010. The Tan Rai bauxite mine in Bao
Lam district is estimated to have a reserve of over 176m tonnes.
Chinese alumina refineries will pay
more for bauxite from Bintan, Indonesia, in 2008, but the increase will pale
in comparison to the rise of freight
costs. Chandong Chiping Xinfa Huayu
Alumina Co. will face an increase of
around US$5-6 per tonne for its 2008
contracts with Bintan miners, This will
take prices next year to around US$20
per tonne fob Bintan for Chiping.
Bauxite prices for Shandong Weigiao
Aluminium Co. will not change much
at US$18-22 per tonne fob Bintan next
year. Refineries in China’s eastern
Shandong province are highly dependent on imported bauxites, particularly
those from Indonesia. Production cost
increases for refineries are mostly due
to surging freight costs.
Freight costs have risen US$1015 per tonne from around mid-year.
Indian bauxite annual contracts are
offered at US$70-90 per tonne cif
Shandong, compared to US$40-50
per tonne cif Shandong in 2006. Bauxite buyers and sellers typically settle
calendar-year contracts near the end
of the year.
86
In December JSW Aluminium was
close to receiving environmental approval for its 1.6m tpy alumina refinery at Visakhapatnamin in the southern Indian state of Andhra Pradesh.
JSW will use Alcan technology at the
Rs40bn (US$1bn) project. It plans to
set up a refinery in the first phase
along with a 90 MW power plant.
The company will set up a 250,000
tpy aluminium smelter in the second
Investors plan US$750m
in African alumina refinery
Investors are in talks with unidentified aluminium producers to develop
a US$750m alumina refinery in Sierra
Leone. The plant may be fed with material from Port Loko, the country’s
largest bauxite deposit co-owned by
Boulle and Toronto-based Moydow
Mines International Inc. and Titanium
Resources Ltd.’s nearby Mokanji deposit. The refinery would be built near
the deposits northwest of Freetown,
and may yield as much as 1.5m tpy. A
feasibility study could take as much as
18 months. The Port Loko deposit contains about 100m tonnes of bauxite.
N
Recycling and secondary smelting
Photo: Hydro
Chinese refineries
to pay more for Bintan bauxite
JSW near to winning
approval for alumina refinery
phase at a cost of Rs60bn (US$1.5bn).
The bauxite mining project that will
feed the alumina refinery is also believed to have received approval from
the Forest Advisory Committee. JSW
expected to complete a detailed engineering study for the refinery project
by mid-January and physical work to
start by March or April 2008.
Alcoa sells autocastings
unit to private equity fund
Alcoa Inc. has sold its automotive
castings business to Compass Automotive Group LLC, a company owned
by private equity fund Monomoy Capital Partners LP, New York. Financial
terms were not disclosed. The business employs about 530 people and
has two main operating locations: the
Michigan Casting Centre in Fruitport,
Michigan, and the Scandinavian Casting Centre in Farsund, Norway.
Cohen Alloys faces closure
Glasgow-based secondary aluminium
ingot producer Cohen Alloys will close
unless management can raise enough
money to buy the company. The plant
ALUMINIUM · 1-2/2008
CO M PA N Y N E W S W O R L D W I D E
is located on the Craigton industrial
estate in Glasgow, and the owner of
the estate is believed to be selling the
land. The plant, which is owned by
MacGregor & Moir, produces around
140 tpw of ingot: mainly LM 6 and
LM 25. This closure would reduce the
amount of ingot produced in the UK
by around 5,000 to 6,000 tpy. Cohen
Alloys has assured customers that it is
in business as usual, amid speculation
over the company’s future.
Rio sells Slovenian
castings businesses
In November 2007 Rio Tinto Alcan
sold two automotive casting businesses in Slovenia to Hidria Rotomatika d.o.o. Terms of the sale were not
disclosed. The company’s casting
operations in Slovenia employ some
170 people and had 2006 revenue of
US$20m. The two units sold were Alcan Koper d.o.o., a wholly owned subsidiary that distributes aluminium die
castings to European automakers, and
Alcan Tomos d.o.o., in which Rio Tinto Alcan held a 67% stake and which
produces aluminium die castings distributed through Alcan Koper. The
businesses were no longer a strategic
fit with Rio Tinto Alcan’s Engineered
Products unit. Hidria, based in Spodnja Idrija in western Slovenia, is using
the acquisition to expand its reach in
the European automotive sector.
Befasa buys Alcasa to form
Europe’s third largest
secondary aluminium producer
Befasa is to buy Aluminio Catalan
(Alcasa) to form Europe’s third largest aluminium waste recycling operation with capacity to produce
150,000 tpy of secondary aluminium.
The combined company estimates
annual sales at €350m (US$512m)
based on 2006 figures. The company
will be 60% owned by Befasa and 37%
by Qualitas Equity Partners, which
recently bought Alcasa, with the remaining 3% being held by the senior
management. Befasa’s aluminium
division booked sale of €228.4m in
2006 and has 95,000 tpy of aluminium
ALUMINIUM · 1-2/2008
alloy production capacity with sites in
Valladolid and Biscay in Spain, as well
as two salt slag recycling operations in
Spain and the UK with overall treatment of 20,000 tpy. Alcasa has 55,000
tpy of capacity with sales of €117m
in 2006, with an alloy treatment plant
in Barcelona, and also owns Trinacria,
which has a plant in Krakow, Poland,
and is expected to achieve 20,000 tpy
treatment capacity by 2008.
Chalco expanding
secondary aluminium capacity
In November Aluminium Corp. of
China (Chalco) is increasing its secondary aluminium alloy capacity as
it gets ready to commission and then
expand its Qingdao plant and then
to build another plant in Guangdong
province. Chalco will commission its
100,000 tpy plant in Qingdao in eastern China’s Shandong province by the
end of 2007. It expects to commission
a second phase of 200,000 tpy – which
will take the capacity of the Qingdao
plant to 300,000 tpy – by 2009. Chalco is also building another secondary
aluminium alloy plant in Foshan in
southern China’s Guangdong province. The first phase of 110,000 tpy
is slated for commissioning by the
end of 2008. Capacity of the Foshan
project will ultimately be 300,000 tpy,
but its schedule will depend on the
progress of the first phase.
UK products site to close
Another UK aluminium manufactured
products site at Dolgarrog in Wales
looks set to close after the Welsh regional government declined to support a management rescue plan. Dolgarrog Aluminium, which is 100 years
old in 2007, is being wound down by
administrators, although a search for
a potential acquirer continues. The
plant, an integrated casting and rolling mill, was originally part of Alcoa
but was bought out by its management around five years ago. Management wanted to take full control of the
plant but needed financial assistance
from the regional government, which
declined.
Anglo Blackwells to close
Anglo Blackwells is to close its
Widnes UK facility, after the master
alloys producer filed for administration in October 2007. The move is part
of a restructuring programme implemented by its US parent company KB
Alloys. Anglo Blackwells, which was
established as Blackwells Metallurgical in 1869, was acquired by KB Alloys in 1995. In 2005, the company
moved most of its business to China,
leaving only a handful of staff at the
Widnes plant in Cheshire.
New Canadian secondary aluminium plant nears completion
Molten Aluminium Producer Canada
(MAPCAN) is nearing completion of
its new secondary aluminium plant
in Allison, Ontario. Mapcan is a joint
venture between Honda Trading
Group and Asahi Seiren Co, and will
supply molten metal to the adjacent
automotive engine plant. Construction of the new facility was expected
to be mechanically complete by the
end of last year with full production
seen early spring 2008.
Alcoa expands recycling capacity
Alcoa has broken ground on a new
US$22m project at its Can Reclamation facility at its Tennessee operations. Improvements include a new
crusher, new delaquering furnace,
with supporting building enclosures,
utilities and environmental systems.
Implementation of this project will increase UBC (used beverage can) molten output capacity by nearly 50%.
Alcoa projects it will recycle nearly
14bn aluminium cans in 2007. The
Can Reclamation project is expected
to be completed over the next 12 to
18 months.
Rio opens new
can recycling plant in France
Rio Tinto Alcan has inaugurated its
US$7m remelting furnace for recycling used beverage cans (UBC) ©
87
CO M PA N Y N E W S W O R L D W I D E
and a new US$15m trimming and
slitting machine for beverage can
body stock at its Neuf-Brisach site in
France. Alcan Speciality Sheet operations include rolling and recycling operations in Neuf-Brisach and Singen
in Germany as well as research and
development facilities in Voreppe,
France, and Neuhausen, Switzerland.
The new strategy will include the divesture of six other business units as
well. The company expects the sale of
the aluminium business to decrease
revenue by approx. US$900m, the
largest chunk of the overall US$1.2bn
Leggett plans to prune overall. Leggett
describes itself as the leading inde-
pendent producer of non-automotive
die castings in North America. Its aluminium group has 20 facilities in the
United States and Mexico, including
14 die casting plants, four tool-anddie shops and two finishing and painting facilities. Most of the sites are in
the eastern half of the nation.
N
Aluminium semis
China’s total secondary aluminium
production is to reach 2.8m t in 2007,
up from 2.4m tonnes in 2006. Of the
projected amount, about 1.8m tonnes
consist of die casting alloys. In 2008,
output is expected to rise further
to 2.98m tonnes, based on strong
demand and increasing scrap supply. Demand is expected to grow in
the coming years, especially in the
manufacturing sectors such as the
automotive industry. Primary aluminium producers are also looking into
secondary production now. By 2010,
China’s secondary aluminium output
may reach up to 3.6m tonnes.
Alexin building aluminium
billet plant in Indiana
Alexin LLC, a start-up company in
Bluffton, Indiana, has broken ground
on a US$56m aluminium billet casting facility that is scheduled to be
operational by November 2008. The
plant is expected to produce more
than 95,000 tpy of billet from scrap.
Alexin will offer billet up to 406 mm in
diameter with length up to 7360 mm.
Construction has already begun in
Bluffton, and all equipment has been
ordered and will arrive in July 2008.
Alexin will supply billet to soft alloy
extruders.
Leggett & Platt to sell
aluminium business
Leggett & Platt Inc., Carthage, Missouri, plans to divest its aluminum
business as part of a broader strategy
to re-focus the company’s operations.
88
Photo: Hydro
China’s output to reach
2.8m tonnes of secondary
aluminium in 2007
North America
Sapa Industrial Extrusions
completes press upgrade
Sapa Industrial Extrusions has completed a US$7m rebuilding and upgrade of press number nine at its
Cressona, Pennsylvania plant. The
project took almost a year to complete
and included complete disassembly
of the entire press and replacement
of all wearable components. The
equipment employs indirect extrusion technology with a 5,500 tonne capacity and 406 mm cylinder size. The
press and its peripheral systems are
now rated to be in ‘as new’ condition.
To improve reliability and control
of temperature and operating speed,
upgrades included significant investment in a new furnace, press control
valves and programmable logic controls. Sapa also installed new equipment for consistent stretch control
and improved handling systems to
protect product finish.
Alcoa Defense awarded contract
for Naval Design Services
Alcoa has been awarded a contract
from the Naval Surface Warfare Center’s Carderock Division for design and
engineering services. These services
will assist in the development of selected assemblies and components
of the Littoral Combat Ship (LCS)
and other naval vessels, particularly
high-speed craft that navigate shallow
waters. The U.S. Congress funded the
contract in recognition of the design
and engineering services that Alcoa
Defense has already provided to the
Army and the Air Force under the
Army Lightweight Structures Initiative and the Advance Aluminum Aerostructures Initiative.
Novelis to supply sheet
for GM and Chrysler vehicles
Novelis Inc., Atlanta, will supply aluminium sheet to General Motors for
the hoods and liftgates on the automaker’s Chevrolet Tahoe Hybrid
and GMC Yukon hybrid sport utility
vehicles. These two models are the
world’s only full-sized hybrid SUVs.
They weigh about 180 kg less than traditional models, in part because aluminium helps to reduce their weight.
Aluminium is also used in the vehicles’ hybrid gasoline-electric drive,
ALUMINIUM · 1-2/2008
CO M PA N Y N E W S W O R L D W I D E
battery back and related equipment.
The company will also supply aluminium sheet blanks for the hoods of
Chrysler LLC’s 2008 Chrysler Town
& Country and Dodge Caravan minivans. The contract represents the
first use of aluminium for Chrysler
minivan hoods. The sheet will come
from Novelis’ Oswego/New York and
Kingston/Ontario plants.
Alcoa dedicates
new production facility
at the plant, an additional US$47m to
the local tax base, and a diversification of products creating a bright future for the facility. Installation of the
litho line started early in 2007. The
line is designed specifically to clean,
level, and trim lithographic sheet that
is used in the high end printing market
for products including magazines, periodicals, brochures, and newspaper
inserts.
Rio Tinto Alcan sells majority
of its European Service Centres
Alcoa Warrick operations dedicated
a new lithographic cleaning line, celebrating the creation of 50 new jobs
Rio Tinto Alcan had received an irrevocable offer for a substantial ma-
jority of its European Service Centres
distribution business from Amari Metals. Amari Metals is a private US-based
company with a significant metal distribution business. Rio Tinto Alcan’s
aerospace distribution business I is not
included in the transaction. An operation in Spain is also excluded. Rio Tinto
Alcan Engineered Products is concentrating its resources on businesses with
good potential for growth where it can
assume leadership positions through a
differentiated product offering. Service Centres business no longer fits in
this strategy. The transaction, which
is subject to competitive review, is
anticipated to close by the end of the
first quarter of 2008. Excluding ©
Stellenanzeige / Job advertisment
We are one of the world's leading companies in the field of high-temperature technologies and applications.
With a comprehensive portfolio and innovative solutions we take an active part in our customers' future
through a worldwide sales network and service presence in Europe, North America and Asia.
We are looking for internationally experienced candidates (female/male) for the following two functions
High Level Sales Manager
Technical Service Manager
• Responsible for sales of lining products for the
aluminium industry to a defined region and selected
multi-national key accounts
• Provide worldwide technical customer support
and technical sales consulting for selected key
accounts
• Negotiate long term supply contracts
• Determine customer specific technical
specifications
• Network with liaison offices and agents
• Organize customers’ audits
• Collaborate with Order Management, Supply Chain
Management, and Technical Service functions
• Manage contracts with engineering companies
for green field and brown field aluminium smelting
projects
• Advise, train and support the customers
in product use
• Solve application problems and manage
technical claims
• Collect and benchmark data on product
performance
• Initiate ideas for product innovation
• International sales experience with the aluminum
industry
• Support sales in assessing the future demand
• Preferably knowledge about use of cathode lining
products in primary aluminium smelting pots
• Technical education, BS or MS in Engineering:
Metallurgy, Ceramics, Electrical or Chemical
• Knowledge of market specific rules and requirements
• Professional experience in the primary aluminium
smelting industry or in a related field providing
technical support
• Financial and legal understanding
• High level of negotiation and communication skills
• Fluent in English and German
• Know-how in smelter designs, technologies and
operations
TALENT MAKES CAPITAL DANCE
www.el-netconsulting.com
• Team player with good presentation skills
• Used to working in multicultural environments
• Fluent in English and willing to travel
If you are interested and wish to join a growing global player, please send your complete application, including
resume, information about expected income and availability to the recruiting firm EL-Net Consulting AG.
EL-Net Consulting AG • Schumannstrasse 2 • D-81679 München • Tel: +49 (0)89 45 55 46-0 • Fax: +49 (0)89 45 55 46-10 • [email protected]
ALUMINIUM · 1-2/2008
89
CO M PA N Y N E W S W O R L D W I D E
the aerospace distribution business
and Spanish operation, Rio’s Service
Centres employ approx. 800 people in
32 sites and 10 countries across continental Europe. The business recorded
2006 revenues of €340m.
South America
Alucasa to boost output in 2008
Venezuelan aluminium company
Alucasa aims to reach installed capacity of 2,000 tpm in 2008 thanks
to, investments in upgrades it plans
to carry out next year. Alucasa currently produces 1,700 to 1,800 tpm of
thin rolled aluminium products. To
reach the goal, Alucasa anticipates
investments of roughly US$1.9 million in technological, environmental
and social upgrades.
Europe
UC Rusal to construct packaging
foil plant in the Moscow region
UC Rusal will construct a packaging
foil plant near the city of Dmitrov in
the Moscow region. The investment
costs are estimated at US$20m. The
plant will have an overall capacity of
20,000 tpy of packaging foil and will increase UC Rusal’s share of the Russian
foil packaging market by up to 66%.
Construction will begin in 2008 with
first production scheduled for the end
of 2009. The foil for the plant will be
shipped from Armenal, Sayanal, and
Ural foil, UC Rusal’s major foil mills.
The new plant will be equipped with
technologically advance machinery
from the world’s leading manufacturers of machines used for cutting,
stamping, lamination, and gluing of
foil products.
Irish building claims
two architectural awards
The Source Arts Centre and Library
in Southern Ireland has captured
two major architectural awards. The
new building incorporates a complex
façade design using Hydro’s Technal-
90
brand curtain walling. The building
has won an Architectural Association
of Ireland (AAI) Award and the award
for Best Public and Cultural Building,
presented at the Irish Architecture
Awards. Both awards aim to encourage the highest standards of design,
while recognizing projects that have
made a significant contribution to
Irish architecture. The €10m riverside
complex, designed by McCullough
Mulvin Architects, has provided the
local community with a contemporary and multi-functional building.
It integrates an exhibition space, a
250-seat auditorium and stage, and a
library and media zone.
Alcoa receives
NADCAP certification
Alcoa has received the National Aerospace and Defence Contractors Accreditation Program’s (NADCAP) approval for ultrasonic inspection and
heat-treated forged products at its
Samara manufacturing facility in Russia. NADCAP is an industry-managed
accreditation programme designed to
develop a global aerospace industry
supplier base with world-class quality control for special processes. The
Samara plant became the second Russian production facility to acquire the
right to enter the world aerospace
market and work with such customers
as Airbus and Boeing. Alcoa’s Belaya
Kalitva heat-treated sheet and plate
received NADCAP approval in summer 2007.
Russia’s KUMZ lands
Boeing supply agreement
In December JSC Kamensk Uralsk
Metallurgical Works (KUMZ) of Russia and its U.S. sales agent, A.S. Mill
Products Inc. (ASMP) signed a longterm supply agreement with Boeing
Commercial Airplanes. KUMZ has
invested more than US$100m over
the past two years upgrading casting,
rolling and heat-treat capabilities at
its Chkalovsky plate facility. The new
plant offers horizontal continuous
heat treatment, electrical conductivity
control, heavy gauge stretching, ultra-
sonic inspection and other supporting
equipment to produce high-quality
aerospace plate products. KUMZ is
the largest independent producer of
semi-finished aluminium products
in Russia and has developed special
applications involving aluminiumlithium alloys. The plant can produce
aluminium sheet up to 2,500 mm wide
and 15 m long.
Alcoa delivers lightweight
truck bodies to Sip-Well
A team from Alcoa’s Auto and Truck
Structures business in Hungary delivered specially made new lightweight
aluminium truck bodies in three
months that were designed and built
exactly to customer specifications.
These new truck bodies made from
aluminium extrusions, castings and
plate from Alcoa Köfem, will save
weight while increasing payload for
Sip-Well of Belgium, a water cooler
company which delivers water coolers and water to the home and office
market segment.
Asia
China Zhongfu mulls
US$740m aluminium plate plant
China’s Zhongfu Industrial Co is considering spending about 5.5bn yuan
(US$740m) to expand and upgrade
an aluminium plate and strip plant in
China’s central province of Henan. The
mid-sized aluminium smelter controlled by Dutch-based Vimetco expects
to complete the project in three years.
The plant would have a capacity to
produce 220,000 tpy of aluminium alloy sheet and strip as well as 80,000
tpy of aluminium medium-thick plate.
This project would replace a 170,000
tpy low-grade aluminium plate and
strip plant, which had already been
under construction.
Timken supplying
bearings for Chinalco rolling mill
The Timken Co, Canton, Ohio, has
been contracted by Siemens VAI
ALUMINIUM · 1-2/2008
CO M PA N Y N E W S W O R L D W I D E
metals Technologies Ltd. to supply
bearings for two aluminium rolling
mills under construction in China
for Aluminium Corp. of China (Chinalco). The terms of the contracts,
which resulted in orders for Timken’s
large bore cylindrical roller bearings,
were not disclosed. Timken designed
bearings for the two Siemens mills,
enabling the customer to install a
successful recirculation oil system
that improved thermal stability for the
four-row cylindrical bearings.
Sapa seeks to double
capacity at Shanghai plant
turing plant in India near Aurangabad
in the state of Maharashtra. The plant
will begin operation by mid 2009 with
one manufacturing line able to produce approx. 600m cans per year. The
facility will be positioned strategically
to supply two-piece beverage cans for
the majority of existing and currently
planned beverage can filling lines in
India. The plant will be managed by
the company’s wholly owned subsidiary Ball Packaging Europe.
Chinese aluminium
foil maker cancels IPO
Heat exchanger strip maker Sapa is
investing SK430m (US$68m) to double capacity to 80,000 tpy at its heat
transfer plant in Shanghai, China.
The investment includes both property and machinery. Planning and
procurement are taking place at once
with consideration for future demands
for heat exchanger material. Another
goal is to increase efficiency at the
heat transfer plant in Shanghai.
Xiashun Holdings Ltd, China’s largest maker of aluminium foil used for
food and drink packages, cancelled
a HK$2.1bn (US$270m) Hong Kong
stock sale after the city’s key index
had its worst month since March
2004. Xiashun pulled the IPO because
of declining market conditions. The
Fujian-based company became the
first since June 2006 to cancel an IPO
in Hong Kong because of declining interest from buyers. Its decision came
after the Hang Seng Index dropped
Ball to build
beverage can plant in India
Suppliers
Ball Corp., Broomfield, Colorado,
plans to build a beverage can manufac-
Hycast to supply casthouse
equipment for Qatalum
The Author
The author, Dipl.-Ing. R. P. Pawlek is
founder of TS+C, Technical Info Services
and Consulting, Sierre (Switzerland), a
new service for the primary aluminum
industry. He is also the publisher of the
standard works “Alumina Refineries and
Producers of the World” and “Primary
Aluminium Smelters and Producers of
the World”. These reference works are
continually updated, and contain useful
technical and economic information
on all alumina refineries and primary
aluminum smelters of the world. They
are available as loose-leaf files and/or
CD-roms from the Aluminium-Verlag,
Marketing & Kommunikation GmbH in
Düsseldorf as well as by online ordering
via www.aluweb.de (Alu-Bookshop)
from Giesel Verlag GmbH.
ALUMINIUM · 1-2/2008
Hycast AS of Sunndalsøra has signed
a letter of intent worth US$40m with
Fata EPC of Italy for the supply of casting equipment for the new aluminium
smelter to be built in Qatar. The agreement includes design and supply of
equipment for casting extrusion ingots and foundry alloys. Construction
of the casthouse is scheduled to begin
in April 2008 and equipment of Hycast is to arrive in Qatar in December
2008, and will be installed over a period of one year.
ABB delivers gas insulated
substation to EMAL
Power and automation technology group ABB has been awarded a
US$30 million contract from Emal for
the supply of a gas insulated substa-
8.6% in November and as shares of six
of the nine companies that completed
IPOs in November trade below their
offer price.
Asia Aluminium mulls
extrusion facility in Middle East
Asia’s largest aluminium extruder
Asia Aluminium Holdings (AAH) is
mulling building an extrusion facility
in the Middle East. Given AAH’s experience in the business, it could take 12
to 15 months to set up a facility once
a project is decided. AAH has not settled on the capacity or location of the
plant but the construction sector in
Dubai is of good size and will continue
to grow in the next five years. There
is also potential in Abu Dhabi, Kuwait
and Qatar. AAH has a total of 300,000
to 350,000 tpy of extruding capacity
in China and recently inaugurated its
Zhaoqing works where it is building a
400,000 tpy hot and cold rolling mill.
The mill is scheduled for full commissioning by July 2008, after which
it will further raise rolling capacity to
700,000 tpy by 2010.
N
tion (GIS) for the aluminium smelter
of Emirates Aluminium Co. (Emal)
which is a joint venture between
Abu Dhabi‘s Mubadala Development
Company and Dubai Aluminium
Company (Dubal). Emal’s greenfield
aluminium smelter project has a total
value of US$4.9bn. The smelter is being built at Al Taweelah, a site close
to Abu Dhabi. Site works on the first
phase of the smelter began early in
2007. In 2010, when the first phase
of the smelter will be completed, it
will start to be operational with a capacity of approx. 700,000 tonnes per
year. ABB’s contract with Emal within the first construction phase spans
the supply of a GIS, the delivery of
the control and protection system as
well as a substation automation system (SAS). This smelter project represents Abu Dhabi‘s entry into the aluminium industry as it joins the ranks
of major regional and international
producers.
N
91
RESEARCH
Multi-temperature measurement of thermoelectric
power for characterisation of solute levels in
multi-component industrial aluminium alloys
O. Engler, M. Clark, Bonn; L. Löchte, Velbert; Z. Lok, Neuss
Introduction
During industrial processing of aluminium alloys the level of solute
atoms dissolved in the aluminium
matrix is an important parameter. Elements in solid solution can increase
the strength of the material, which
is widely used e. g. in the non-heat
treatable 5xxx series Al-Mg alloys.
In deformed materials, solute elements may affect softening processes
(recovery and / or recrystallisation).
Second-phase particles, which form
from solid solution, are also known
to exert strong influence on the materials behaviour during deformation
and recrystallisation.
However, although the solute level
is an important microstructure feature
by controlling several materials properties, its experimental characterisation is not that simple. The two most
widely used techniques include measurements of the electrical resistivity
and the thermoelectric power, TEP.
However, both techniques only yield
an integral value of solutes, but cannot distinguish between the contribu-
92
tions of various solute elements. It was
the purpose of the presented study
to combine and advance these two
methods, measurements of electrical
resistivity and TEP measurements at
various sub-ambient temperatures,
into a state that industrial multi-component alloys can be characterised
with regard to the solute level of up
to eight elements.
The measurement technique
The electrical resistivity, ρ, of an alloy generally consists of two contributions, i. e. (i) a temperature-dependent term ρ0 which is independent of
the defect density, including solutes,
and (ii) the temperature-independent
contribution of solute elements ρd.
This empirical observation, known as
Matthiessen’s rule [1, 2], leads to the
following expression of the electrical
resistivity, ρ, of a dilute aluminium alloy containing several alloy elements i
as a function of temperature, T:
ρ (Τ,ciss ) = ρ0 (Τ ) + Σαi ciss + ρother
a metal is subjected to a temperature
gradient, electrons at the hot end will
have a higher energy than those at
the cold end and will hence diffuse
towards the cold end so as to lower
the total energy of the system. This
diffusion leads to a drop in electrical
voltage, which counteracts the electron migration until finally a dynamic
equilibrium is achieved. In case of a
simple geometry as sketched in Fig. 1,
the electrical voltage ΔV is proportional to the temperature gradient ΔT [8]:
ΔV = SΔT
(2)
Here, S is a constant, which is also
known as the Seebeck coefficient.
This so-called Seebeck effect is most
often used to measure temperatures
by means of thermocouples, where
the thermo-voltage for a given combination of materials is a measure for
the applied temperature difference.
For analysis of solute elements in
aluminium alloys the inverse effect is
utilised: Here, a constant temperature
i
(1)
ρ0 is the resistivity of high-purity aluminium (2.65 μΩ·cm at 20°C [3, 4]);
the quantities ciss indicate the concentration of element i in solid solution. The element-specific resistivity
coefficients αi can be found in the literature (e. g. [1, 4, 5]). The term ρother
summarises all other contributions
from lattice defects such as vacancies, dislocations, grain boundaries
and second-phase particles. There
are various means to take such effects into account (e. g. [4-7]), which,
however, will not be discussed in this
paper any further.
The thermoelectric power, TEP, of
a material is a measure of the magnitude of an induced thermoelectric
voltage in response to a temperature
difference across that material. When
Illustrations: Hydro
The amount of solute elements in
aluminium alloys can be assessed
from measurements of the thermoelectric power (TEP). Under
the assumption that the specific
TEP signals of individual alloy
elements in aluminium depend on
temperature in different ways, TEP
values obtained at various temperatures can provide a number
of independent measurements
for the analysis of solute levels
in multi-component alloys. This
paper describes an advanced setup to characterise solute levels
in commercial aluminium alloys
by combining measurements of
the electrical resistivity with TEP
measurements at a number of
sub-ambient temperatures.
Fig. 1: Schematic representation of the
experimental set-up for measuring the
relative TEP ΔV for an aluminium alloy
with respect to high purity aluminium
electrodes after applying a temperature
gradient ΔT
ALUMINIUM · 1-2/2008
RESEARCH
gradient of the order of 10 K is applied
to the sample of interest. The resulting – rather small – thermo-voltage
is a measure for the amount of lattice
defects and, most notably, alloy elements in solid solution.
However, as known from thermocouple measurements, attaching a
voltmeter to the material in order to
measure the thermoelectric voltage as
sketched in Fig. 1 involves junctions
of different types of metal to another,
so that the measured voltage is a contribution from the TEP of the material
of interest and that of the electrodes.
In the present case the goal is to detect the amount of the solute alloying
elements in aluminium alloys, so that
the reference electrode material was
chosen to be high purity aluminium.
The measured relative TEP, ΔS, is
then given by:
ΔValloy ΔVAl ΔVmeasured
ΔS = Salloy - SAl = ⎯⎯⎯ - ⎯⎯ = ⎯⎯⎯⎯
ΔΤ
ΔΤ
ΔΤ
(3)
Analysis of the TEP signal of a dilute
alloy in terms of the solute concentration is commonly achieved by applying the Nordheim-Gorter equation
[8]:
Σi ΔSi αi ciss + ΔS
ΔS = ⎯⎯⎯⎯⎯
other
ρ (T, ciss)
(4)
ρ is the electrical resistivity of the alloy (see Eq. 1); αi and ciss denote the element-specific resistivity coefficients
and the solute concentration of alloy
element i, respectively. ΔSi are the element-specific TEP coefficients (see
below), while ΔSother is a correction
term for the influence of other lattice
defects, most notably dislocations.
It has to be noted that both techniques – measurement of electrical
resistivity and TEP – only yield an integral value of solutes, but cannot distinguish between the contributions of
various solute elements. Hence, quantitative evaluations can only be made
under the assumption that solely one
element contributes to the signal (e. g.
[9-11]). Combination of the two techniques will then enable analysing the
contribution of two independent elements [12, 13]. Similarly, TEP measurements at two different temperatures has been shown to yield two in-
ALUMINIUM · 1-2/2008
dependent signals which, in turn, also
allows analysis on two different solute
elements [13, 14].
In the presented study these ideas were taken further by combining
electrical resistivity measurements
with measurements of TEP at several
sub-ambient temperatures [15] into
a state that industrial multi-component alloys can be characterised with
regard to their solute level, for up to
eight different alloying elements.
Installation of a
multi-temperature TEP device
A literature survey has shown that for
Al-Mg-Mn-Fe-Si the individual binary TEP signals vary significantly with
both solute content and temperature
(Fig. 2). It is important to note that the
manner in which the TEP varies with
T and ci is different for each alloying
element. The mostly non-linear dependence on T is seen to dominate at
sub-ambient temperatures and tends
to weaken when higher temperatures
are reached, where the overall linear
T-dependence of the electrical resistivity part starts to prevail. Therefore,
TEP values obtained at different subambient temperatures can indeed
provide the required number of independent measurements [15].
Based on the above concept, a new
device was designed, constructed by
Anatech BV, Sittard (the Netherlands)
[16] and finally installed at the R&D
Center of Hydro Aluminium in Bonn,
Germany (Fig. 3). The set-up consists
of two main components, (i) a device
to establish the temperature and,
most notably, the temperature gradient along the test specimen and (ii) a
high-precision voltmeter to measure
the resulting low voltage TEP signals
with a resolution of below 0.5 nV.
The Anatech TEP instrument uses
two heat cells which can both be
heated with an electric furnace and
cooled with liquid nitrogen through
a heat exchanger within the furnace
block. Thus, the device allows measurements in a temperature range of
–190°C to +400°C with a temperature
stability of better than 0.01 K. The
temperature difference between the
two cells can be controlled between
0 and 20 K, with a typical value of 10
K. Samples with standard geometry
used for resistivity measurements can
be used for the TEP measurements as
well. The samples are clamped with a
small, constant mechanical pressure
on the two high-purity (99.9995%)
aluminium electrodes which are in intimate contact with the two heat cells
(Fig. 4). The TEP signal is then gripped
at these aluminium electrodes.
During a typical measurement cycle a temperature difference of 10 K
is applied to the two ends of the sample, i. e. to the two furnaces with the
two electrodes. The cycle starts at low
Fig. 2. Relative TEP ΔS for binary Al-Mg [8], Al-Mn, Al-Si and Al-Fe [13] as a function of
solute level ciss measured at various sub-ambient temperatures
93
RESEARCH
temperatures with the one furnace
having a temperature of –175°C and
the other –165°C. This configuration
is kept for a couple of minutes until
the measured TEP signal remains constant. Then the cells are heated up to
the next measuring temperature, and
this procedure is repeated for seven
temperature combinations from the
above-mentioned average temperature of –170°C up to room temperature (25°C). Thus, after one cycle seven TEP signals for seven temperatures
are acquired.
Unfortunately, only a limited
number of the temperature-dependent, element-specific TEP coefficients
ΔSi(T) are available in the literature.
Therefore, in the present study these
parameters had to be measured before multi-component alloys could
be analysed. For that purpose a set of
binary alloys for the most important
alloying elements, Si, Fe, Cu, Mn, Mg,
Cr, Zn and Ti were produced, solutionised in order to generate a condition with the entire amount of alloying
element in solid solution and finally
water quenched. Then the TEP signals of the samples were determined
at seven temperatures ranging from
–170°C up to 25°C, in exactly the
same measuring cycle as described
above. Finally, for each of these temperatures and each binary alloy with
a known concentration of solutes the
resulting specific TEP coefficients ΔSi
were calculated with the NordheimGorter equation (Eq. (4)).
When now an unknown multicomponent aluminium alloy is probed
Fig. 3. Photograph of the opened TEP device including the liquid nitrogen tank installed at
Hydro’s R & D Center in Bonn, Germany.
at seven temperatures Tj, a system of
seven independent equations can be
constructed:
ΔS (Tj ) = ΣΔS iTj (ciss )
t
(5)
An additional equation is provided by
measurement of the electrical resistivity ρ (Eq. (1)). This set of eight equations is then solved with the help of a
least-square minimisation algorithm
so as to derive the solute levels ciss of
up to eight different alloy elements.
Application example
In what follows the application to
multi-component TEP measurements
with the described device will be illustrated for the
AlFeSi alloy AA
8011, which is
a general-purpose alloy for
many packaging
applications. Alloy AA
8011 can be
produced by the
classical route
of direct chill
(DC)
casting
followed by hot
and cold rolling
or, alternativeFig. 4. Photograph of the specimen clamped on the high-purity aluminium electrodes and the heating / cooling cells ready for the TEP
ly, by twin roll
measurement
casting (TRC)
94
with subsequent cold rolling. In general, the TRC process is distinguished
from conventional DC material by a
much higher level of elements in supersaturated solid solution. Within the
framework of the present study AA
8011 sheet produced by TRC has been
further processed along two routes
differentiated by the amount of solute
elements retained in solid solution: (i)
material processed along route ‘A’ was
cold rolled without inter-annealing,
such that most alloy elements were
retained in solid solution. In contrast,
(ii) material of route ‘B’ was subjected
to a high-temperature inter-annealing
which was accompanied by precipitation of Si and Fe-bearing particles.
Samples taken at final gauge (90 μm)
were annealed so as to determine the
resistance of the two differently processed materials to softening. For that
purpose, the samples were slowly heated up to various temperatures ranging
from 200 to 450°C, kept at this temperature for 3 hours and finally cooled
down slowly so as to mimic industrial
coil annealing treatments. Fig. 5 shows
the resulting mechanical properties in
terms of yield strength, Rp0.2, and elongation at fracture, A100mm, as a function
of the peak metal temperature, MT.
Obviously the two different processes
applied largely influence the response
of the material to annealing. Note that
for back-annealed states (H2x) a flat
softening curve is generally desired
for the sake of process stability.
ALUMINIUM · 1-2/2008
RESEARCH
For evaluation of the metallurgical
reactions controlling the slope of the
softening curve combined TEP and
resistivity measurements were evaluated for the as-rolled (fully work
hardened) condition, the results are
summarised in Table 1. It is evident
that the solute level of the most important alloy elements, Si and Fe, is
significantly higher for route ‘A’ than
for route ‘B’. Obviously the high-temperature inter-annealing performed
in route ‘B’ leads to heavy precipitation of Si and, particularly, Fe-bearing phases, not unlike the processes
occurring during homogenisation in
conventional DC processing. With regard to the final gauge properties the
high level of solute Si and Fe exerts a
strong solute drag retarding the softening reactions, recovery and recrystallisation, in the non-inter annealed
material of route ‘A’. Accordingly,
back-annealing of non-inter annealed
TRC sheet at a temperature of about
270°C offers the possibility to attain
material with a strength of about 100
MPa combined with elongation values in excess of 20%.
Summary and conclusions
This paper describes an advanced
set-up to characterise solute levels in
aluminium alloys through measurements of the thermoelectric power
(TEP) at several sub-ambient temperatures. Under the assumption that
the specific TEP signals of individual
alloy elements in aluminium display
element
bulk composition
solute level, route ‘A’
Si
0.610
0.268
Fe
0.910
0.046
Cu
0.014
0.012
Mn
Mg
Cr
0.016 0.0013 0.013
0.005 0.0008 0.009
Zn
0.005
0.004
Ti
0.022
0.004
solute level, route ‘B’
0.025
0.004
0.012
0.002 0.0008 0.002
0.004
0.019
Tab. 1: Elements in solid solution for AA 8011, compared to the bulk chemical composition
(in [wt%])
different variation with temperature,
TEP values obtained at various temperatures can provide a number of
independent measurements for the
analysis of solute levels. In the present
study this idea was implemented by
designing a set-up for automated TEP
measurements in a temperature cycle
from –170°C up to ambient temperature. In combination with measurements of the electrical resistivity, TEP
measurements at seven temperatures
allow differentiation of the solute
level of up to eight alloying elements
in commercial multi-component aluminium alloys.
Acknowledgements
This work was in part funded by the
German Federal Ministry for Education and Research (BMBF). The authors are grateful to W. D. Finkelnburg
for helpful discussions.
References
[1] D. Altenpohl, Aluminium und Aluminiumlegierungen. Berlin: Springer-Verlag,
1965.
[2] P. Ólafsson, R. Sandström, Å. Karlsson,
Mater. Sci. Forum 217-222 (1996) 981-986.
[3] J. R. Cooper, Z. Vucic, E. Babic, J. Phys.
F Metal. Phys. 4 (1974) 1489-1499.
[4] F. Kutner, G. Lang, Aluminium 52
(1976) 322-326.
[5] J. E. Hatch (ed.), Aluminum: Properties
and Physical Metallurgy. Metals Park, OH:
ASM, 1984. 1988
[6] H.-E. Ekström, Back annealing of laboratory cast AlFeSi and commercial 1200
alloys: I Sample processing, tensile properties and solute content. Finspång, Sweden:
Sapa technical report D01/699, 2001.
[7] G. Grimvall, Thermophysical Properties
of Materials, p.268, North Holland 1986.
[8] J. M. Pelletier, R. Borrely, Mater. Sci.
Engng. 55 (1982) 191-202.
[9] J. Hasenclever, Einfluß der Fertigungsbedingungen dünner Bänder auf
Gefüge und mechanische Eigenschaften
von AlMn-1%-Legierungen. Düsseldorf,
Germany: VDI Verlag, 1990.
[10] N. J. Luiggi, Mater. Trans. 28B (1997)
125-133.
[11] S. Tangen, K. Sjølstadt, E. Nes, T.
Furu, K. Marthinsen, Mater. Sci. Forum
396-402 (2002) 469-474.
[12] Z. J. Lok, A. J. E. Flemming, R. G.
Hamerton, S. van der Zwaag, Mater. Sci.
Forum 396-402 (2002) 457-462.
[13] F. R. Boutin, S. Demarkar, B. Meyer, Proc. 7th Int. Light Metals Congress,
Leoben/Vienna. Düsseldorf: AluminiumVerlag, 1987, p. 212-213.
[14] Oscarsson, W. B. Hutchinson, H.-E.
Ekström, D. P. E. Dickson, C. J. Simensen,
G. M. Raynaud, Z. Metallkd. 79 (1988)
600-604.
[15] Z. J. Lok, Microchemistry in Aluminium Sheet Production. PhD-thesis,
Delft University of Technology, Delft, The
Netherlands, 2005.
[16] http://www.anatech.nl/
Authors
Dr. Olaf Engler, senior scientist, and
Michael Clark BSc, technician, are employed at the R & D Center Bonn of Hydro
Aluminium Deutschland GmbH.
Dr. Lothar Löchte, previous programme
manager at Hydro RDB, is now with Erbslöh Aluminium GmbH, Velbert.
Fig. 5. Softening diagram for AA 8011 at final foil gauge for two different processing
routes (see text for details)
ALUMINIUM · 1-2/2008
Dr. Zacharias Lok, formerly at TU Delft,
now works as a product engineer for can
stock materials at Aluminium Norf GmbH,
Neuss, Germany.
95
RESEARCH
Entstehung von CO2-Emissionen bei der
Herstellung von Aluminium-Walzprodukten vor dem
Hintergrund des nationalen Emissionshandelssystems
J. Neumeister, Neuwied
Ein wesentliches Ziel der derzeitigen Klimapolitik ist die Reduzierung entstehender Treibhausgase.
Mit ihr gingen in der nahen Vergangenheit unterschiedliche Maßnahmen einher, um die durch das
Kyoto-Protokoll gesteckten Ziele
bis 2012 erfolgreich einhalten zu
können. Das nationale Emissionshandelssystem stellt eine dieser
Maßnahmen dar. Hierüber werden
verschiedene Tätigkeiten der Energiewirtschaft und der Industrie
bereits durch das TreibhausgasEmissionshandelsgesetz erfasst
und unter einen gemeinsamen
CO2-Cap gestellt. Um weitere Reduzierungspotenziale zu erschließen,
beschäftigte sich ein durch die Aleris Aluminium Koblenz GmbH initiiertes Projekt mit einer Tätigkeit,
die bisher nicht vom nationalen
Emissionshandel erfasst wurde,
und zwar der Tätigkeit zur Herstellung von Aluminium-Walzprodukten. Neben einer ausführlichen
CO2-Prozessanalyse relevanter
Herstellungsverfahren und der integrativen Betrachtung ganzer Prozessketten wurden Emissionswerte
für unterschiedliche Produkte
entwickelt (vgl. Neumeister 2007).
Diese verhalfen dazu, entsprechende CO2-Emissionen, die bei
der Erzeugung von AluminiumWalzprodukten anfallen, vor dem
Hintergrund des nationalen Emissionshandels zu beurteilen und zu
bewerten.
Die betrachteten Prozesse bzw. Prozessketten umfassten sämtliche relevanten Vorgänge zur Erzeugung von
Bändern/ Blechen und Platten aus
Aluminium. Im Wesentlichen waren
dies Prozesse innerhalb der Betriebsbereiche Gießerei, Warmwalzwerk,
Kaltwalzwerk und Plattenfertigung.
Zusätzlich wurden noch die Bereitstellung von Druckluft, Wasser und
der energetische Bedarf von Flurför-
96
derzeugen analysiert. Die Grenze der
Bilanzierung stellte die Abgrenzung
zur Herstellung von Bändern/Blechen
und Platten aus Aluminium dar. Diese
wurden innerhalb der Fertigungsbereiche so gewählt, dass Fehler durch
Vernachlässigungen, Ausgrenzungen
und Abschätzungen minimal waren.
Die Grafik (Fig. 1) veranschaulicht
bilanzierte Stoff- und Energieströme
einzelner Prozesse.
entstanden unter der besonderen
Berücksichtigung eines ausgewählten Produktionsstandortes. Hierzu
wurden sowohl historische Daten im
Zeitraum zwischen 2000 und 2005
ausgewertet als auch unterschiedliche Messreihen zur Ermittlung
energetischer Verbräuche herangezogen. Die hier gezeigten Ergebnisse
basieren auf den genannten Datenerhebungen, die rund 117 Anlagen
Fig. 1: Darstellung der berücksichtigten Stoff- und Energieströme zur Ableitung der
spezifischen Endenergieverbräuche bzw. der entsprechenden spezifischen CO2-Emissionen
Die Betrachtung von Energieverbräuchen bezog sich im Rahmen der Untersuchungen ausschließlich auf den
Endenergieeinsatz. Der energetische
Einfluss folgender Punkte fand indes
keine Berücksichtigung:
• benötigte Rohstoffe und entstehende Emissionen zur Erzeugung
bzw. Bereitstellung von Erdgas,
Diesel, Wasser und Strom durch
entsprechende Versorgungsunternehmen
• benötigte Rohstoffe und entstehende Emissionen zur Erzeugung
bzw. Bereitstellung von Primäraluminium und weiterer Legierungselemente bzw. von verwendetem recycelten Aluminium
• menschliche Arbeit, z. B. Maschinenbeschickung von Hand
• metabolische Arbeit, z.B. Nährwert von Lebensmitteln
• Umweltenergie, z. B. natürliche
Beleuchtung oder Beheizung
durch passive Solarenergienutzung.
Die erfassten energetischen Daten
umfassten, zzgl. bereits existierender
Studien (u.a. der SFB 525).
Die Bestimmung der einzelnen
CO2-Emissionen betrachteter Herstellungsverfahren erfolgte über die entsprechend ermittelten spezifischen
Endenergieeinsätze. Unterteilt wurden
die entstehenden CO2-Emissionen in
prozessbedingte und energiebedingte
Emissionen (vgl. ZUG 2007).
Prozessbedingte Emissionen sind
laut Definition „[...] alle Freisetzungen
von Kohlendioxid in die Atmosphäre, bei denen das Kohlendioxid als
Produkt einer chemischen Reaktion
entsteht, die keine Verbrennung ist“
(§13 Absatz 2 ZUG 2007). Es konnte
gezeigt werden, dass bei den betrachteten Prozessen keinerlei prozessbedingte Emissionen entstehen.
Energiebedingte Emissionen hingegen sind verbrennungsbedingte
Emissionen. Die Berechnung dieser
Emissionen erfolgt über eine Aktivitätsrate und über einen entsprechenden Emissionsfaktor. Erfolgt die
Bestimmung der CO2-Emissionen
ALUMINIUM · 1-2/2008
RESEARCH
über einen entsprechenden Emissionsfaktor, so wird weiterhin der
untere Heizwert in Ansatz gebracht.
Werden die CO2-Emissionen über
den Kohlenstoffgehalt bestimmt, so
ist ein Umsetzungsfaktor für CO2/C
von 3,664 (EU 2004) anzusetzen. Innerhalb der Kohlenstoffbilanz wird
dabei zusätzlich zwischen biogenen
und nicht-biogenen Kohlenstoffen
unterschieden. Im Rahmen dieser
Arbeit wurde der seitens der Dehst
empfohlene Faktor für Erdgas L mit
0,0002015 tCO2/kWhth zu Grunde
gelegt; für Diesel wurde ein Emissionfaktor von 0,000270 tCO2/kWhth
angewandt. Die hierüber ermittelten
CO2-Frachten sind nicht biogen.
Biogene Kohlendioxid-Emissionen
stehen laut Definition für „Emissionen aus der Oxidation von nicht
fossilem und biologisch abbaubaren,
organischen Kohlenstoff zu Kohlendioxid“ (§2 Absatz 8 ZUV 2007). Mit
anderen Worten: Primärenergieträger
wie Erdöl, Kohle und Erdgas bestehen aus sogenannten nicht-biogenen
Kohlenstoff laut ZUV 2007 und damit
nach Ansicht der Deutschen Emissionshandelsstelle.
Anhand des jeweiligen Emissionsfaktors erfolgt dann die Berechnung
der spezifischen CO2-Emissionen
über die Anwendung des unteren
Heizwertes und der entsprechenden
spezifischen Aktivitätsrate der jeweiligen Anlagen.
Als Ergebnis der Prozessanalyse
wurden spezifische CO2-Emissionen
unterschiedlicher Anlagen dargestellt
und in verschiedenen Produktgruppen zusammengefasst. Für den Fertigungsbereich Gießerei wurden
die Arbeitsabläufe des Chargierens,
Schmelzens, Haltens, Refinings, Gießens, Abschopfens, Fräsens und Plattierens berücksichtigt (Fig. 2). Anhand
entsprechender
Produktgruppen
wurde ersichtlich, dass die entstehenden CO2-Emissionen im Bereich
von 0,017 bis 0,488 tCO2/tAl liegen. Für
den Bereich des Warmwalzwerkes
wurden die Vorgänge des Erwärmens
und Warmwalzen betrachtet. Das sich
je nach Produktionsstruktur anschließende Kühlen konnte aufgrund unzulänglicher Daten nicht mit berücksichtigt werden. Basierend auf der
sich ergebenden Prozesskette zeigten
ALUMINIUM · 1-2/2008
sich CO2-Emissionen von 0,023 bis
0,086 tCO2/tAl. Der im anschließenden
Schritt betrachtete Fertigungsbereich
des Kaltwalzwerkes beinhaltete die
Prozesse des Vor-, Zwischen- bzw.
Fertigglühens, des Kaltwalzens, des
Längs- und Querteilens, des Reckens
und schließlich des Verpackens. Die
CO2-Emissionen lagen hier im Bereich von 0,002 bis 0,305 tCO2/tAl.
Schließlich wurde noch der Bereich
der Plattenfertigung bilanziert. Die
hierbei untersuchten Prozesse erstrecken sich auf das Glühen, Kaltwalzen, Härten, Sägen, Recken und
die Inspektion der Platten. Das sich
ergebende Produktspektrum wurde mit Hilfe eines allgemeinen Pro-
duktansatzes definiert und zeigte im
Gesamten CO2-Emissionen von 0 bis
0,409 tCO2/tAl.
Nach Abschluss der Prozessanalyse wurde ein produktspezifischer
Emissionswertebereich
ermittelt.
Dies erfolgte anhand der aufgestellten spezifischen CO2-Emissionen unterschiedlicher Produktgruppen. Die
gesamten spezifischen CO2-Emissionen der Endprodukte Aluminiumband/-blech bzw. Aluminiumplatte
ergaben sich über die unterschiedlichen Zusammenhänge der einzelnen Produktgruppen. Der Übersicht
halber wurden diese in Fig. 3 dargestellt. Hierbei wurden die maximalen
Bereiche der CO2-Emissionen be-
Fig. 2: Ergebnis der Prozesskettenanalyse im Fertigungsbereich der Gießerei mit Darstellung entstehender CO2-Emissionen resultierend aus dem jeweiligen spezifischen Endenergiebedarf
97
RESEARCH
stimmt. Die ermittelten Bereiche an
Emissionswerten ewKaltwalzwerk und
ewPlattenfertigung können die Endprodukte Aluminiumband/-blech und
Aluminiumplatte repräsentieren.
Hierzu gilt:
t
ewAl-Band/Blech = (0,042 ÷ 0,879) CO2⁄t
Al
t
ewAl-Platte = (0,04 ÷ 0,983) CO2⁄t
Al
mit
ewAl-Band/Blech = Produktspezifischer
Emissionswert für Aluminiumbänder/-bleche in tCO2/tAl
ewAl-Platte = Produktspezifischer Emissionswert für Aluminiumplatten in
tCO2/tAl
Weiterhin sollen an dieser Stelle
Einflussgrößen genannt werden, die
mitunter maßgeblich den zu wählenden Emissionsbereich in unterschiedlichen Produktionsstätten beeinflussen. Diese wären im Einzelnen:
(1) Technologien der vorhandenen
Anlagen. Wesentlich beeinflusst wird
der Emissionswert hierbei durch unterschiedliche Schmelzanlagen wie
regenerative, rekuperative, KaltluftBrenner und induktive Systeme, aber
auch verwendete Brennertypen an
den eingesetzten Glühöfen
(2) Technischer Zustand der verwendeten Anlagen. Maßgeblich ist hier
der Zustand der Wärmedämmung
eingesetzter Ofenanlagen, aber auch
der Zustand verwendeter Brenner
(3) Schmelz- und Glühprogramme
nehmen aufgrund unterschiedlicher
Temperaturverläufe und festgelegter
Zeiten Einfluss. Ausschlaggebend ist
an den Schmelzanlagen die vorhandene Fuchstemperatur und die gewählte
Überführungstemperatur.
Letztere nimmt wiederum Einfluss
auf den jeweils nachgeschalteten
Halteofen
(4) Produktionsspezfische Einflussgrößen wie die Auslastung der un-
Fig. 3: Darstellung der Herleitung möglicher Emissionswerte auf Basis der aufgestellten
Produktgruppen
terschiedlichen Anlagen, vorhandene
Wartezeiten voneinander abhängiger
Anlagen, unterschiedliche Prozessketten
(5) Legierungen nehmen Einfluss
durch Vorgabe der zu wählenden
Schmelz- und Glühprogramme sowie
die Bestimmung der notwendigen
Walzparameter. Weiterhin sind in
diesem Zusammenhang unterschiedliche physikalische Eigenschaften
von Bedeutung
(6) Ausgangsmaterial hat Auswir-
Min.
Max.
Min.
2000
1.420.067
59.643
1.248.239
54.146
2.166
53.226
61.809
2001
1.431.031
60.103
1.257.876
54.240
2.170
53.318
62.273
2002
1.544.069
64.851
1.357.237
64.589
2.584
63.491
67.434
2003
1.596.788
67.065
1.403.577
71.350
2.854
70.137
69.919
2004
1.632.388
68.560
1.434.869
77.659
3.106
76.339
71.667
2005
1.693.858
71.142
1.488.901
77.544
3.102
76.226
74.244
Max.
1.301.464
1.311.194
1.420.728
1.473.714
1.511.208
1.565.127
tAl
Band/Blech (0,2 – > 6mm)
tCO2
Min.
Max.
tAl
Platten (> 6mm)
CO2-Emissionen in Summe
tCO2
tCO2
kungen aufgrund der unterschiedlichen geometrischen Abmessungen
und der hierüber beeinflussten Wärmeübertragungsflächen innerhalb der
Öfen, aber auch innerhalb weiterer
Prozesse wie der Walzvorgänge, des
Sägens etc.
Zu beachten ist, dass die hier abgebildeten Emissionswerte den maximal möglichen Bereich innerhalb der
Produktion von Aluminium-Walzprodukten angeben. Die oben genannten
einschränkenden Kriterien sind folg-
Tab. 1: Zusammenstellung der Ergebnisse der Hochrechnung möglicher CO2-Emissionen produzierter Aluminium-Walzprodukte
auf Basis der Produktionsdaten von 2000 bis 2005 unter Anwendung der aufgestellten Emissionswerte
98
ALUMINIUM · 1-2/2008
RESEARCH
lich bei der Wahl des Wertbereichs
heranzuziehen.
Zur Abschätzung der Einflussnahme der Erzeugung von Aluminiumbändern/-blechen und -platten auf
die nationale Allokation erfolgte eine
Hochrechnung in Anlehnung an die
laut Gesamtverband der deutschen
Aluminiumindustrie (GDA) berichteten Produktionsdaten der Aluminiumhalbzeuge. Die Tab. 1 fasst dies noch
einmal zusammen. Analog zu der Produktionsentwicklung erzeugter Bänder/Bleche und Platten verzeichnet
sich ein Anstieg der CO2-Emissionen
von 2000 mit maximal erwarteten
1.301.464 tCO2 auf 2005 mit maximal
1.565.127 tCO2.
Die Ergebnisse machen deutlich,
dass es aufgrund des erheblichen
Spektrums an möglichen CO2-Emissionen der unterschiedlichen Produkte schwer sein wird, diese mittels
eines gemeinsamen Emissionswertes
zusammenzufassen. Im Rahmen des
nationalen Emissionshandels ist es daher fraglich, ob eine Vereinheitlichung
bei einer Verpflichtung der Aluminium verarbeitenden Industrie an den
CO2-Zertifikatshandel über einen
gemeinsamen
Produkt-Emissionswert, sprich BVT-Produktbenchmark,
erfassbar sein wird. Größere Abweichungen von einem gemeinsamen
Emissionswert würden im Rahmen
der Zuteilung zu erheblichen Ungerechtigkeiten für einzelne Betreiber
führen und somit zu einem wirtschaftlichen Ungleichgewicht beitragen. Die
politische Tendenz allerdings läuft
derzeit stark auf die Vereinheitlichung
für unterschiedliche Produkte hin.
Für den Aluminium verarbeitenden
Prozess bleibt anzuraten, entweder
auf Basis der hier erzielten Ergebnisse und zukünftiger Analysen einen Benchmarkansatz zu entwickeln,
der mittels eines Ausgangswerts ein
eingeschränkteres Spektrum als das
hier ermittelte für eine Zuteilung
von CO2-Zertifikaten vorsieht, oder
aber zu versuchen, eine Zuteilung
über die Festlegung unterschiedlicher Produktgruppen zu erzielen.
Auf Basis der hier ermittelten
CO2-Emissionen der deutschen Aluminium-Walzwerke soll nun der
Einfluss auf die nationale Allokation
kurz diskutiert werden. Die Anlagen
ALUMINIUM · 1-2/2008
Tätigkeit
CO2- Emissionen [tCO2/a]
Feuerungsanlagen
Roheisen und Stahl
Raffinerien
Zementklinker
Kalk
Papier, Karton, Pappe
Glas
Keramische Erzeugnisse
Aluminium Walzprodukte
Zellstoff
380.531.645
32.155.159
23.761.135
20.433.336
9.672.669
4.710.677
3.928.428
1.883.097
1.565.127
305.828
Tab. 2: Gegenüberstellung der maximal erwarteten CO2-Zertifikatsmengen für die Tätigkeit der Erzeugung von Aluminium-Walzprodukten im Jahr 2005 zu den weiteren Tätigkeiten im nationalen Emissionshandel nach TEHG 2004.
der Aluminium-Walzwerke wären in
diesem Sinne als zusätzliche Neuanlagen anzusehen. Unter der Annahme
eines konstanten Mengengerüstes bei
vorangegangener Einplanung dieser
Anlagen von rund 11 Mio. tCO2 laut
NAP II soll diese Menge für die weitere Beurteilung herangezogen werden. Ebenfalls wird bei der Betrachtung sowohl von den maximal als
auch minimal möglichen CO2-Emissionen ausgegangen. Bezieht man diese
für 2005 ermittelten CO2-Emissionen
von 74.244 tCO2 bis 1.565.127 tCO2 auf
den laut ZUG 2012 vorgegebenen
CAP für zusätzliche Anlagen, so ergibt sich ein Anteil von rund 0,67 bis
14,2%. Dies würde bedeuten, dass bei
den jährlichen Zertifikatsmengen der
Jahre 2008 bis 2012 für die zusätzlichen Anlagen bis 14,2% der Mengen
auf die deutschen Aluminium-Walzwerke entfallen könnten.
Legt man an dieser Stelle das ermittelte Maximum der hochgerechneten
CO2-Emissionen für eine Zuteilung
ohne die Berücksichtigung etwaiger anteiliger Kürzungen zu Grunde
und stellt dieses den übrigen Tätigkeiten nach TEHG 2004 für das Jahr
2005 gegenüber (vgl. Tab. 2), so lässt
sich erkennen, dass die angefallenen
Mengen, zusammen mit den aus den
keramischen Erzeugnissen und der
Zellstoffproduktion resultierenden
Emissionen, im unteren Bereich zu
finden sind.
Hierbei darf nicht außer Acht gelassen werden, dass Tätigkeiten wie
die Erzeugung von Zellstoff mit rund
305.828 tCO2 bereits am Handelssystem teilnehmen und somit aktiv an
der Einhaltung der getroffenen Minderungspflichten mitwirken. Kuhn/
Thielen 2003 berufen sich in diesem
Zusammenhang auf die Minderung
spezifischer CO2-Emissionen und
die hierüber eingehaltene Selbstverpflichtung der Aluminiumindustrie
am Beispiel der Firma Aluminium
Norf GmbH in Neuss. Eine Minderung
der CO2-Emissionen bezieht sich im
Sinne des nationalen Emissionshandels allerdings nicht auf spezifische
CO2-Emissionen, sondern stets auf
absolute Mengen. Die Senkung der
spezifischen CO2-Emissionen ist somit stets der Entwicklung der Produktionsmengen gegenüberzustellen.
Die durchgeführte Bilanzierung am
Beispiel des betrachteten Aluminium-Walzwerkes hingegen zeigte eine
jährliche Zunahme der gesamten
CO2-Emissionen im Mittel der Jahre
2000 bis 2006 von rund 1,4%.
Abschließend ist festzuhalten,
dass eine mögliche Teilnahme der
Tätigkeiten zur Erzeugung von Aluminium-Walzprodukten keine gravierende Auswirkung auf die gesamte
nationale Allokation haben wird. So
könnte sich diese allerdings in der Anpassung des zugrunde gelegten Erfüllungsfaktors äußern. Die zusätzlichen
Mengen wären mitunter auf die bisher teilhabenden Unternehmen umzulegen. Inwiefern dies hin zu einer
verstärkten Verkürzung des Marktes
führt, bleibt abzuwarten. Vermutlich
werden zusätzlich über CDM- und
JI-Maßnahmen generierte Zertifikate,
die innerhalb der zweiten Handelsperiode von 2008 bis 2012 bis zu einem
Anteil von 22% (vgl. ZUG 2012 §18
Satz 1) genutzt werden können um
die Abgabepflicht zu erfüllen, diesen
Verkürzungseffekt ausgleichen.
Eine im Rahmen dieses Projektes
99
NEW BOOKS
entstandene Dissertation mit dem
Thema „CO2-Prozessanalyse von
Aluminium-Walzprodukten und Ansätze für eine CO2-arme Produktion“
(Neumeister 2007) wird Ende des
ersten Quartals 2008 veröffentlicht.
Diese beschäftigt sich neben der hier
erwähnten Ableitung von Emissionswerten für Aluminium-Walzprodukte
auch hinsichtlich der Einhaltung des
nationalen Klimaschutzziels mit Möglichkeiten der CO2-Minderung innerhalb der Produktionabläufe von Aluminium-Walzwerken und berücksichtigt
dabei auch erstmals die Anwendung
einer CO2-Abscheidung. Diese Thematik wird in der nächsten Ausgabe
dieser Zeitschrift aufgegriffen.
Quellen
(1) ZUG 2007: „Gesetz über den nationalen
Zuteilungsplan für Treibhausgas-Emissionsberechtigungen in der Zuteilungsperiode 2005 bis 2007“, Bundesgesetzblatt, Jg.
2004, Teil I Nr. 45, Bonn 30.08.2004.
(2) ZUG 2012: „Gesetz zur Änderung der
Rechtsgrundlagen zum Emissionshandel
im Hinblick auf die Zuteilungsperiode
2008 bis 2012“, Bundesgesetzblatt, Jg.
2007, Teil I Nr. 38, Bonn 10.08.2007.
(3) ZUV 2007: „Verordnung über die Zuteilung von Treibhausgas-Emissionsberechtigungen in der Zuteilungsperiode 2005
bis 2007“, Bundesgesetzblatt, Jg. 2004, Teil
I Nr. 46, Bonn 31.08.2004.
(4) TEHG 2004: „Gesetz zur Umsetzung
der Richtlinie 2003/87/EG über ein System für den Handel mit Treibhausgasemissionszertifikaten in der Gemeinschaft“, Bundesgesetzblatt, Jg. 2004, Teil I
Nr. 35, Bonn 14.07.2004.
(5) Kuhn; Thielen 2003: „FachberichteEnergieeinsparung und CO2-Minderung
in einem integrierten Aluminium-Walzwerk“, P. Kuhn, St. Thielen, in: Gaswärme
International, Bd. 52 Nr. 8, Gaswärme Institut, Essen 2003, S.508- 514.
(6) EU 2004: „Entscheidung der Komission
vom 29/01/2004 zur Festlegung von Leitlinien für Überwachung und Berichterstattung betreffend Treibhausgasemissionen
gemäß der Richtlinie 2003/87/EG des
Europäischen Parlaments und des Rates“,
Komission der Europäischen Union, Brüssel 29.01.2004.
(7) Neumeister 2007: „CO2-Prozessanalyse von Aluminium-Walzprodukten und
Ansätze für eine CO2-arme Produktion“,
J. Neumeister, Eingereichte Dissertation
an der Fakultät für Maschinenwesen der
Ruhr Universität Bochum, Bochum 2007.
(8) Sonderforschungsbereich SFB 525,
Ressourcenorientierte Gesamtbetrachtung
von Stoffströmen metallischer Rohstoffe,
RWTH Aachen, 1997-2002, Aachen.
Autor
Dipl.-Ing. Jens Neumeister studierte Maschinenbau an der Fachhochschule Koblenz (Vertiefungsrichtung Energie- und
Umwelttechnik), mit nachfolgendem
Ergänzungsstudium an der Technischen
Universität Clausthal. Sein Promotionsverfahren zum Dr.-Ing. wird in Kürze abgeschlossen sein. Seit 2006 betreibt er das
Ingenieurbüro Neumeister in Neuwied
mit den Schwerpunkten energetische
Beratung im industriellen Kraftwerksbereich/Papierindustrie sowie Unternehmensbetreuung im CO2-Zertifikathandel.
In der Zeit von 2006 bis zum Jahreswechsel 2008 war Neumeister in der Abteilung
„Technische Dienste“ der Aleris Aluminium Koblenz GmbH in Koblenz tätig, in der
er das hier vorgestellte Projekt leitete. In
dieser Zeit schrieb er seine Dissertation,
die vom Lehrstuhl für Energiesysteme und
Energiewirtschaft der Ruhr-Universität
Bochum betreut wurde.
Pre-painted Aluminium in Exterior Architecture
This book is meant to be an introduction to a subject, which so
far has not been covered in detail
in technical or architectural professional literature. The segment
of surface-treated, semi-finished
aluminium rolled products for
high-tech, post-formable architectural applications since more than
40 years has grown into a sizable
business and has increased substantially in complexity.
Conventional education on the engineering or architectural side can
hardly cope with the pace of new
ideas and developments constantly
coming up in this innovative industry. Therefore, the book is intended to
provide a not too scientific, up-to-date
and systematic overview (as of 2007)
of facts and data compiled from various sources. Also, modern means of
information have been integrated for
further studies or research of the latest
100
developments by means of electronic
means (internet research / email addresses) via respective trade names or
relevant industry publications, which
usually tend to be close to the latest
developments.
The book can be used as reference
and study guide by a wide range of
professionals. The focus is on architects, specifiers, planners, consultants,
building owners, metal builders or
procurement personnel as well as on
apprentices, trainees and newcomers
to the subject. A general overview is
given about the specific range of prepainted aluminium rolled products
for exterior architecture from fabrication of the semi-finished product to
installation of the finished products.
Readers will become familiar with the
comprehensive technical terms used
in this market segment, while decision makers will be enabled to differentiate between the options between
respective technologies and qualities
resulting from that.
An insight is being given into the
versatility of pre-painted aluminium
for roof and wall claddings. The variety of applications is shown to understand the technical aspects, which
should lead to economical construc-
ALUMINIUM · 1-2/2008
NEUE BÜCHER
tions with their specific advantages
of pre-painted rolled products versus
other options. There are differences
in designs, product philosophies and
qualities leading to individual solutions and price levels of the end products installed.
As pre-painted aluminium sheets
are expected to have a larger share in
architecture than before this book is
intended to illustrate the advantages
of pre-painted aluminium rolled
products, designed for decorative
purposes. Readers will profit from
this accumulated know-how and be
encouraged to consider pre-painted
aluminium sheets to be an interesting and advantageous option in their
planning considerations for exterior
roof and wall claddings.
The author Fred-Roderich Pohl is
an acknowledged expert whose busi-
ness career has been closely connected with the promotion of pre-painted
aluminium for architectural purposes
for many decades.
F.-R. Pohl, Pre-Painted Aluminium
in Exterior Architecture, ISBN 97887017-288-6, 1. edition 2007, 160 p., €
67,- plus shipping costs. This book can
also be ordered via Giesel Verlag website: www.aluweb.de (Alu-Bookshop).
Handbuch zur Industriellen Bildverarbeitung
Die Fraunhofer-Allianz Vision, Erlangen, hat anlässlich ihres 10-jährigen Jubiläums das „Handbuch
zur Industriellen Bildverarbeitung
– Qualitätssicherung in der Praxis“ herausgegeben. Das Buch
gibt einen Überblick über die industrielle Qualitätssicherung mit
automatischer Bildverarbeitung
und ist sowohl zur Unterstützung
von Entscheidungsträgern als auch
von Anwendern gedacht. Neben
Fachaufsätzen komplettieren eine
Anbieterübersicht und ein Referenzteil zu Fachliteratur, Fachzeitschriften, Messen, Veranstaltungen
usw. das Handbuch.
Die Leitfaden-Reihe zur Bildverarbeitung der Fraunhofer-Allianz Vision
hat sich in den letzten Jahren fest
etabliert. In der Vergangenheit wurde jährlich ein Leitfaden herausgegeben, der jeweils einen Aspekt neuer
Entwicklungen in der industriellen
Bildverarbeitung in möglichst verständlicher Form unter Einbindung
von Praxisbeispielen beleuchtet hat.
Anlässlich des 10-jährigen Jubiläums
der Allianz erscheint statt eines Leitfadens dieses komplette Buch, das
das aktuelle Wissen der industriellen
Bildverarbeitung bündelt. Besondere
Beachtung finden auch die zukunftsträchtigen und noch nicht so verbreiteten Techniken zur Inspektion unter
der Oberfläche und zur berührungslosen dreidimensionalen Vermessung
von Werkstücken bis in den Nanometerbereich der Oberflächenstrukturen.
Das Buch bietet eine anwendungsbezogene Mischung aus Theorie und
ALUMINIUM · 1-2/2008
Praxis. Die Beiträge stammen von erfahrenen Wissenschaftlern und sind
nicht nur für Anwender, sondern
auch für Ingenieure und Studierende
interessant, bei denen Überlegungen
zum praktischen Einsatz der Techniken in der industriellen Umgebung
im Vordergrund stehen.
Im ersten Teil werden zunächst einige Grundlagen der Bildverarbeitung
vorgestellt. Der Bogen spannt sich von
technischen Voraussetzungen über
Wirtschaftlichkeitsbetrachtungen bis
hin zu praktischen Tipps für den Einsatz von Bildverarbeitungssystemen
im Betrieb. Es folgen ein Überblick
über momentan verfügbare Bild-Sensoren (Zeile, Matrix, CMOS, Röntgen,
3-D, Infrarot usw.) sowie über Optiken
und Beleuchtung. Abgeschlossen wird
der erste Teil mit Betrachtungen zum
Thema Software.
Die folgenden Kapitel behandeln
anwendungsbezogene Themen. Die
Einteilung orientiert sich an der Fragestellung, was bzw. welcher Bereich
von Werkstücken geprüft werden
soll (also Oberflächen, Abmessungen
usw.) und wie (also mit welcher Prüfmethode) die Prüfung stattfinden soll.
Zunächst geht es um die äußerliche
Prüfung von Werkstücken: Oberflächenprüfung und Charakterisierung
von Mikrostrukturen auf Oberflächen. Danach werden Methoden
der berührungslosen Messtechnik
vorgestellt, mit denen Werkstücke
dreidimensional vermessen und auf
Maßhaltigkeit geprüft werden können. Anschließend werden dann
Methoden beschrieben, mit denen
man Bereiche in Werkstücken, die
äußerlich nicht sichtbar sind, unter-
suchen kann. Zum einen können mit
Wärmefluss-Thermographie Fehler
unterhalb der Oberfläche detektiert
oder auch Schichtdicken vermessen
werden. Zum anderen erlaubt die
Röntgentechnik die Untersuchung
und Vermessung des Inneren von
Werkstücken. Schließlich wird noch
ein Blick in die Zukunft geworfen:
Die Terahertz-Tomographie befindet
sich noch im Entwicklungsstadium,
verspricht aber für die Zukunft interessante und insbesondere die Röntgentechnik ergänzende Perspektiven,
denn THz-Strahlung durchdringt Papier, Keramiken und Kunststoffe und
wird von metallischen Leitern und
Wasser absorbiert. Vorteilhaft gegenüber Röntgenstrahlung ist, dass diese
Strahlung extrem energiearm und somit nichtionisierend ist.
Im Anschluss an den Textteil
folgt das Kapitel „Anbieter-Porträts“.
Maßgebliche Firmen, die Systeme
und Lösungen zur Bildverarbeitung
und optischen Messtechnik anbieten, werden hier in standardisierter
Form porträtiert, so dass der Leser
bei Bedarf geeignete Kontaktdaten
und Adressen zur Hand hat. Den
Abschluss bildet das Kapitel „Referenzen“ mit einer Zusammenstellung
wichtiger Quellen zur Bildverarbeitung wie Fachliteratur, Zeitschriften,
Messen und Veranstaltungen.
Handbuch zur Industriellen Bildverarbeitung – Qualitätssicherung in der
Praxis, Fraunhofer IRB Verlag, 513
S., geb., 4-farbig, ISBN: 978-3-81677386-3, Preis € 52,00. Bezug: Büro der
Fraunhofer-Allianz Vision (vision@
fraunhofer.de) oder Buchhandel.
101
V E R A N S TA LT U N G E N
Review
Incal 2007 – 3rd International Conference on Aluminium
21 to 23 November 2007, Hyderabad, India
In his keynote address President
of Aluminium Association of India, Debu Bhattacharya (also Managing Director of Hindalco Industries Ltd., the aluminium major in
India) spoke about India’s role in
the aluminium world of tomorrow.
He referred to India as a desired
destination, the attractiveness of
India as a manufacturing centre
and the aluminium industry’s role
in India. The attractiveness of the
aluminium industry in India and
its potential set the tone for the
other lectures to follow.
An exhibition with spread over 2,000
m2 of space and over 50 participating
exhibitors and a conference with 12
plenary lectures and 44 presentations
in 2 parallel session threads were offered to the more than 700 delegates.
The plenary talk of ‘Development
of Aluminium in India: Science and
Technology Roadmap’ by M. Goel of
the governmental Department of Science and Technology gave some vital facts and figures: present annual
production exceeds 1.2m tonnes, targeted production is 6m tonnes in the
year 2020. The “need for developing
an integrated technology roadmap for
addressing energy efficiency concerns
and promotion of environmentally
friendly technologies” was highlighted. An in-depth analysis of demand
and supply of various commodities
and with particular focus on aluminium was presented by Paul Robinson
of CRU UK. The challenges to the
downstream industries in aluminium
was brought out in detail by Richard
Brandtzaeg, Norsk Hydro. Conspicuous in other plenary sessions was the
importance given to issues related to
energy and environment; especially
the carbon credit scheme presented
by C. Cornier, a representative from
the World Bank, on ‘Carbon finance
business-Al sector in India’ attracted a
lively discussion. Other plenary talks
dealt with the current state of the art
and trends in the aluminium industry.
The exposition on automotive applications by K. H.von Zengen, EAA, was
received with great interest.
The papers presented in the parallel regular sessions covered the entire
range of topics in the areas of production and recycling of aluminium,
extrusion, dies, castings and forging.
Over 60 percent of contributions by
overseas speakers – notably those
from the U. S. and Europe – in the
sessions gave the conference a very
international character.
The organisers made an excellent
job of the conference and fair by offering technical sessions and an exhibition of the highest standards and
a forum for concerted interaction
and personal networking to the participants. An extensive coverage by
print and visual media ensured that
adequate attention was drawn to the
programme not only within the participants, but the outside public in India as well. The forum was extended
to the light cultural programmes and
banquets. The facilities offered by the
Hyderabad International Convention
Centre and the adjoining five star hotel made the conference memorable
not only in terms of exchange of information and ideas concerning technical and economic issues but also in
terms of convenience and comfort.
As was mentioned in the closing
session, those who missed Incal 2007
will have to wait for the next Incal in
2011. For details of Incal 2007 see
http://www.aluminium-india.org/INCAL_07.pdf or contact [email protected]
M. Pandit, Kaiserslautern
RWTH Update-Seminar
Einführung in die Technologie des Aluminiums
11. bis 13. Februar 2008, Aachen
Das aec – aluminium engineering
center aachen, die RWTH International Academy GmbH und der Gesamtverband der Aluminiumindustrie e. V.
(GDA) veranstalten gemeinsam ein
weiteres Mal das Fortbildungsseminar „Einführung in die Technologie
des Aluminiums“ in verschiedenen
Instituten der RWTH.
Auch diesmal referieren namhafte
Professoren der RWTH Aachen über
die Metallurgie, Herstellung, Verar-
102
beitung und Anwendung von Aluminium. Ergänzt werden die Vorträge
durch praktische Versuche. Im Laufe
der Veranstaltung wird, ausgehend
von metallkundlichen Grundlagen,
die gesamte Prozesskette durchlaufen, angefangen von der Erzeugung
von Primäraluminium über Gießprozesse, der Umformung von Aluminiumbändern bis hin zur Beschichtung
und Prüfung fertiger Bauteile.
Die Teilnehmer erhalten sowohl
auf theoretischer als auch auf praktischer Ebene einen umfassenden
Überblick über die einzelnen Glieder
in der Prozesskette. Bei erfolgreicher
Teilnahme stellen die Veranstalter
eine Teilnahmeurkunde aus.
Das Seminar richtet sich in erster
Linie an Naturwissenschaftler, Ingenieure und Techniker aus der Aluminiumindustrie und der Aluminium
verarbeitenden Industrie ohne ausgeprägten werkstoffwissenschaftlichen
ALUMINIUM · 1-2/2008
EVENTS
Hintergrund, eignet sich aber auch
für Kaufleute z. B. aus Vertrieb und
Einkauf, die sich einen technischen
Überblick über den Werkstoff Aluminium verschaffen wollen.
Weitere Informationen und Anmeldeunterlagen:
RWTH International Academy:
Lydia Schneider
Tel.: 0241 8020 708
[email protected]
GDA:
Wolfgang Heidrichw
Telefon: 0211 4796 271
[email protected]
Metals: Energy, Emissions and
the Environment Conference
Tel: +49 (0)5323 9379 0
eMail: [email protected]
www.gdmb.de
Further information:
Metal Bulletin Events
Tel: +44 (0)20 7779 8989
[email protected]
www.metalbulletin.com
11 to 12 February 2008, Brussels
In the European metals industry, energy and climate change are high on
the agenda. Both pose enormous challenges and threats, none more so than
the risk of migration of European primary production. The conference will
discuss key issues including: energy
costs and impact on production and
competitiveness, current and future
regulation challenging the European
metals industry, metals as innovative
and sustainable materials, life-cycle
developments, waste legislation and
much more.
Further information:
Metal Bulletin Events
Tel: +44 (0)20 7779 8989
[email protected]
www.metalbulletin.com
8. KBU – Kolloquium zu Wirtschaft
und Umweltrecht
28. bis 29. Februar 2008, Aachen
Die gemeinsame Tagung des Lehr- und
Forschungsgebiets Berg- und Umweltrecht der RWTH Aachen sowie der
GDMB Gesellschaft für Bergbau, Metallurgie, Rohstoff- und Umwelttechnik steht unter der Thematik „10 Jahre
Berg- und Umweltrecht: Habitatschutz
– Mineralische Abfälle – Emissionshandel“. Im Rahmen der Entsorgung
bergbaulicher Abfälle gilt es nach wie
vor, die Richtlinie bergbauliche Abfälle umzusetzen. Der Emissionshandel
geht nunmehr in die zweite Runde,
so dass sich die Auswirkungen auf die
verschiedenen Branchen deutlicher
zeigen. Hinzu kommt, dass scharfe
Anforderungen aus dem Habitat- und
Vogelschutz bergbaulichen Projekten
Probleme bereiten oder sie ganz blockieren. Hierzu werden auch Reformvorschläge präsentiert und bewertet.
Weitere Infos:
GDMB-Geschäftsstelle
ALUMINIUM · 1-2/2008
Ferrous & Non-ferrous Scrap Metal
27 to 28 February 2008, Moscow
The conference is dedicated to the
issues of metal scrap recycling, price
formation, and consumption in Russia and overseas. Direct networking
and exchange of views will encourage
the expansion of mutually beneficial
cooperation between scrap metal recyclers and metallurgists. Participants
are leading scrap metal collectors and
recyclers, basic scrap metal consumers – steel works, tube plants, transport and logistics companies, scrap
metal exporters of Russia, the CIS,
and overseas. There will be arranged
simultaneous translation into Russian
and English.
Further information:
Rusmet.Ru Ltd.
Tel: +7 495 980 0608
[email protected]
www.lom.rusmet.ru
14th Bauxite and Alumina Seminar
3 to 5 March 2008, Miami, USA
Jointly organised by Industrial Minerals and Metal Bulletin, the 14th Bauxite
and Alumina seminar will provide the
forum in which to examine and debate
the key issues that will be influencing
market dynamics for this important
segment of the aluminium supply chain
over the coming years. Key topics to be
discussed are: alumina – latest global
pressures and balances; bauxite – exploration and prospective; aluminium
consolidation – impact and the implication for alumina supplies and trade
flows; costs of alumina production –
how to reduce the costs and maximize
the production; logistics – problems
and emerging trends; sustainability
and environment issues – challenges
ahead for the industry.
LASYS – Messe für Systemlösungen
in der Laser-Materialbearbeitung
4. bis 6. März 2008, Stuttgart
Die weltweite Nachfrage nach Lasersystemen zur Materialbearbeitung
steigt rapide an und ist Ausdruck ständig erweiterter Einsatzbereiche der
Lasertechnik. Hier setzt die LASYS an:
Sie zeigt Systeme und Verfahren für die
ganze Palette der Bearbeitungsformen
– Schweißen, Schneiden, Bohren, Löten, Beschriften u.v.m. – mit Laser.
Damit ist sie Marktplatz und zugleich
branchenübergreifende Kommunikationsplattform. Die Messe wendet
sich an die Investitionsgüterindustrie,
OEMs sowie Zulieferer. Einen Schwerpunkt der Auftaktveranstaltung bilden
die Wirtschaftszweige, die den Messestandort Stuttgart prominent prägen:
Automobil- und -zulieferindustrie,
Maschinen- und Anlagenbau, metallbearbeitende und -verarbeitende
Industrie, Medizintechnik, Feinwerkund Präzisionstechnik.
Weitere Infos:
Landesmesse Stuttgart GmbH
Tel: +49 (0)711 2589 0
[email protected]
www.messe-stuttgart.de
TMS 2008
9 to 13 March 2008, New Orleans, USA
When materials scientists and engineers from 70 countries gather for the
TMS 2008, the focus will be on sharing
research and technology to find materials solutions to some of the world’s
most pressing problems. More than
2,000 papers will be presented by authors. Among the challenges they will
address are: Resolving technology and
techno-management issues for the pro-
103
V E R A N S TA LT U N G E N
duction of aluminium, metal casting,
steel, automotive and electronic materials; Stabilizing climate change and
reducing greenhouse gas emissions;
Optimizing energy utilization; Developing materials for high-performance
applications; Achieving process improvement for a variety of materials
under a variety of conditions; Preparing future materials scientists and engineers. These issues and others will
be presented in 56 symposia covering
the four major themes of light metals;
extraction, processing, structure and
properties; emerging materials; and
materials and society.
Further information:
TMS Meetings Services
724 776 9000
[email protected]
www.tms.org
3rd International Conference on
High Speed Forming
11 to 13 March 2008, Dortmund, GER
Objectives and topics of the ICHSF
2008 conference are: process technologies (electromagnetic, explosive
and shock wave forming, combined
processes), tools and equipment (tool
design and manufacturing, machine
design, pulsed power equipment), energy (process efficiency, emissions, life
cycle analysis), materials and measurement techniques (material characteristics and behaviour, high speed testing
methods, process monitoring, quality
assurance), modelling and simulation
(finite and boundary element method,
physical modelling, analytical techniques, contact and impact modelling), industrial applications (e. g. automotive, aerospace, electrical industry,
chemical industry).
Further information:
ICHSF 08
Tel: +49 (0)231 755 - 6917, - 5238
[email protected]
www.ichsf.iul.uni-dortmund.de
Euroguss und Internationaler
Deutscher Druckgusstag
11. bis 13. März 2008, Nürnberg
Euroguss, die internationale Fachmesse für Druckgießtechnik ist auf Erfolgskurs. Sie hat nicht nur bei Fläche und
Neuausstellern im Vergleich zur Veranstaltung 2006 zugelegt, auch das Interesse der internationalen Aussteller
104
Fortbildung
REACH – Das neue EU-Chemikalienrecht, 15. Februar 2008, Köln
TÜV Nord Akademie, Tel: +49 (0)221 945352 0, [email protected],
www.tuevnordakademie.de
Schutztextilien, 19. Februar 2008, Altdorf
Technische Akademie Wuppertal, Tel: +49 (0)202 7495 0, [email protected],
www.taw.de
Woche der Oberflächentechnik an der FH Hannover: Vorbehandeln
zur Verbesserung der Haftung, 19. bis 20. Februar 2008, Hannover
Weiterbildung und Technologietransfer, Tel: +49 (0)511 9296 1020,
[email protected], www.fh-hannover.de
Woche der Oberflächentechnik an der FH Hannover: Adhäsionsund Haftungsprüfung, 21. Februar 2008, Hannover
Weiterbildung und Technologietransfer, Tel: +49 (0)511 9296 1020,
[email protected], www.fh-hannover.de
Produkthaftung – Risiken in Deutschland, Europa und USA,
27. bis 28. Februar 2008, Regensburg
OTTI Ostbayer. Technologie-Transfer-Institut, Tel: +49 (0)941 29688 26,
[email protected], www.otti.de
Einführung in die Metallkunde für Ingenieure und Techniker,
4. bis 7. März 2008, Darmstadt
DGM Deutsche Gesellschaft für Materialkunde e.V., Tel: +49 (0)69 75306 757,
[email protected], www.dgm.de
Hightech-Klebstoffe und ihre Anwendungen, 10. bis 11. März 2008,
Wuppertal
Technische Akademie Wuppertal, Tel: +49 (0)202 7495 0, [email protected],
www.taw.de
Wirtschaftliche und technologische Aspekte endkonturnaher
Fertigungsverfahren, 11. bis 12. März 2008, Düsseldorf
VDI-Wissensforum GmbH, Tel: +49 (0)211 6214 201, [email protected],
www.vdi-wissensforum.de
Vom Mitarbeiter zur Führungskraft – Kompetenz und Souveränität
von Anfang an, 11. bis 12. März 2008, Berlin
TÜV Nord Akademie, Tel: +49 (0)30 201774 47, [email protected],
www.tuevnordakademie.de
Schweißgerechtes Konstruieren, 13. bis 14. März 2008, Köln
VDI-Wissensforum GmbH, Tel: +49 (0)211 6214 201, [email protected],
www.vdi-wissensforum.de
ist groß. Parallel zur Fachausstellung
findet der 8. Internationale Deutsche
Druckgusstag statt, auf dem drei Tage
lang hochkarätige Vorträge gehalten
werden. Der Druckgusstag wird nun
auch in den Euroguss-freien Jahren
in Nürnberg stattfinden. Veranstalter
ist der ideelle Träger der Messe, der
Verband Deutscher Druckgießereien
(VDD) in Kooperation mit dem Verein
Deutscher Gießereifachleute (VDG).
Weitere Infos:
Nürnberg Messe GmbH
Tel +49 (0)911 8606 0
[email protected]
www.euroguss.de
ALUMINIUM · 1-2/2008
LITERATURE SERVICE
Lin, Q.; Peng, D.; Li, Y.; Lin, G.
A study on the hot deformability of 2519 aluminum
alloy at elevated temperatures
Light Metal Age, Oktober 2007, S. 46-49
The hot deformability of 2519 aluminum alloy under elevated
temperatures was studied by the analysis of true stress-strain
curves and observation of the deformed microstructures
with an optical microscope (OM) and a transmission electron
microscope (TEM). Compression tests were performed on a
Gleeble-1500 thermal simulator at the deformation temperature range from 300°C to 500°C and at a strain rate range of
0.05s-1 to 25s-1. The experimental results showed that the flow
stress of 2519 aluminum alloy increases with increasing strain
and tends to be constant after a peak value at lower strain
rates of ε<25s-1, and a dynamic recovered sub-structure was
observed with TEM. The flow stress sawtooth pattern fluctuated and decreased after a peak value with increasing strain
at higher strain rates of ε≥25s−1, which was associated with a
dynamic recrystallization revealed by OM and TEM. Flow softening was due to dynamic precipitate coalescence and not to
dynamic recrystallization at elevated temperature and lower
strain rate. A hyperbolic sine relationship correlated well for
fitting the flow stress as a function of strain rate, and an Arrhenius relationship related temperature and time of dynamic
recrystallization. The flow stress of 2519 alloy during high
temperature deformation can be determined from the ZenerHollomon parameter including the hot deformation activation
energy of 2519 aluminum alloy, which was calculated to be
167.81KJ/mol from the Arrhenius equation. 6 ill., 9 sources.
ALUMINIUM 1/2 (2008)
Legierungen
Scamans, G.
Shear processing of aluminium alloy surfaces and its
influence on corrosion
Aluminium International Today, Juli/August 2007, S. 26-28
Surface deformation of aluminium alloys by rolling or grinding can induce corrosion beneath coated surfaces as a result
of precipitation of intermetallics depleting the matrix of
protective alloying elements. Al-Mn alloys are particularly
susceptible in hot rolled sheet whereas Al-Mg are not, while
in material subjected to grinding the Al-Mg-Si-(Cu) AA6xxx
automotive alloys are susceptible. Subjecting an aluminium
surface to a mechanical processing operation such as hot or
cold rolling, grinding, machining or cutting transforms the
surface structure. The surface microstructure is locally transformed and, if the surface shear is high enough, then a layer
with an ultra-fine grain size is developed. This layer has very
different optical, mechanical and electrochemical properties
to the underlying bulk microstructure. These properties can
be exploited or they can be used to understand why and how
aluminium alloy surfaces may corrode anomalously from the
bulk alloy either during testing, as mechanical abrasion is frequently used to prepare samples for electrochemical testing,
or in service, particularly under paint films. 5 ill.
ALUMINIUM 1/2 (2008)
Werkstoffe, Korrosion
Gutensohn, M.; Wagner, G.; Eifler, D.
Ultraschallschweißen von Aluminiumlitzen
Schweissen und Schneiden 59 (2007) 10, S. 550-554
Das Ultraschallschweißen wurde zum Fügen von Aluminiumlitzenknoten mit Querschnittsflächen von 24 und 25,8 mm2
aus zwei unterschiedlichen Litzenqualitäten eingesetzt. Das
unerwünschte Anhaften der Aluminiumlitzen am Schweißwerkzeug wurde insbesondere bei erhöhten Schweißtemperaturen im Bereich der Sonotrode beobachtet. Um diese
erhöhten Schweißtemperaturen zu vermeiden und somit das
Anhaften am Schweißwerkzeug zu reduzieren, wurde der
Schweißprozess in zwei Schritte aufgeteilt. Ferner wurden
ALUMINIUM · 1-2/2008
Verschleiß reduzierende Beschichtungen auf den Sonotroden
eingesetzt, die das Anhaften auch bei einstufigem Schweißprozess entscheidend reduzieren können. Es konnte gezeigt
werden, dass sich das in der Kabelbaumfertigung etablierte
Ultraschall-Litzenschweißen auch zur Herstellung von Aluminiumlitzenknoten eignet. 8 Bild., 8 Qu.
ALUMINIUM 1/2 (2008)
Verbinden
Ji, J.; Jasnau, U.; Seyffarth, P.
Prozessporen beim Nd:YAG-Laserstrahl-MSGHybridschweißen von Aluminiumlegierungen – Teil 2:
Strategie zu ihrer Vermeidung
Schweissen und Schneiden 59 (2007) 10, S. 555-560
Die Vermeidung von Prozessporen ist wichtig für die Qualitätssicherung hybridgeschweißter Verbindungen aus Aluminiumlegierungen. Der Beitrag zeigt, dass das Verhältnis von Laserstrahlleistung zu Leistung des Metall-Schutzgasschweißprozesses (MSG-Leistung) und die Schweißgeschwindigkeit
wesentliche Einflussfaktoren für die Prozessporenentstehung
sind. Durch eine Verknüpfung des empirischen Wissens und
statistischer Verfahren wurde eine Strategie zur Vermeidung
von Prozessporen mit dem definierten Beurteilungskriterium Porendurchmesser dP 0,5 mm entwickelt. Mathematisch
beschreibbare prozessporenfreie Parameterfelder können angegeben werden. Mit der Porenstrategie wurde ein Diagramm
für die Vorhersage der Prozessporenentstehung und die Strategie für die Parametereinstellung entwickelt. Diese Ergebnisse tragen zur Erhöhung der Schweißnahtqualität beim Laserstrahl-MSG-Hybridschweißen von Aluminiumlegierungen
bei und bilden die Voraussetzung für eine Optimierung der
Schweißparameter.7 Bild., 7 Qu.
ALUMINIUM 1/2 (2008)
Verbinden
Weiss, K.; Honsel, C.
Simulation von Gefüge und mechanischen Eigenschaften
von Strukturbauteilen aus Magnesium
Giesserei 94 11/2007, S. 30-37
Gewichtsreduktion ist ein zentrales Thema in der Automobil-, Luft- und Raumfahrtindustrie. Aufgrund der geringen
Dichte von Magnesium bieten sich Magnesiumlegierungen
zur effizienten Gewichtsreduzierung an. Der Beitrag erläutert
das Potenzial dieser Legierungsgruppe an einem Beispiel aus
der Luftfahrt. Es wird ein Modell für die Simulation lokaler
mechanischer Eigenschaften von Magnesium-Gussbauteilen
vorgestellt und an Testplatten für die kommerzielle Legierung
AZ91E verifiziert. Des Weiteren wird das Modell auf die neu
entwickelte hochfeste Legierung MRI207 erweitert. Für beide
Legierungen wird das Modell auf zwei typische Gehäusebauteile des Business Jets G150 (von I.A.I. in Tel Aviv produziert)
angewendet. Beide Bauteile werden den strengen Richtlinien
der Luftfahrttechnik unterzogen und für flugtauglich befunden. 10 Bild., 1 Tab., 8 Qu.
ALUMINIUM 1/2 (2008)
Magnesium
Scharf, C.; Ditze, Z. u. A.; Horny, K.; Franke, G.; Blawert, C.;
Kainer, K.-U.; Morales, E.
Untersuchungen zum Einsatz einer MagnesiumSekundärlegierung in der industriellen Praxis
Giesserei 94 11/2007, S. 38-50
Da der Energieverbrauch im Transportwesen wegen der emittierten Treibhausgase stark zu reduzieren ist, gewinnt der Einsatz von Leichtmetallen dort immer mehr an Bedeutung. Dem
steht jedoch der hohe Energiebedarf bei der Herstellung aus
den primären Rohstoffen entgegen. In dieser Situation spielt
das Recycling gerade bei Leichtmetallen eine wichtige Rolle, denn der hierfür erforderliche Energiebedarf macht nur
105
LITERATURSERVICE
einen Bruchteil der bei der Primärgewinnung benötigten
Energie aus. Beim Recycling haben jedoch Magnesiumlegierungen den Nachteil, dass es bisher keine definierten Sekundärlegierungen wie bei den Aluminiumlegierungen gibt.
Die Untersuchungen des Gießverhaltens, der mechanischen
Eigenschaften und der Korrosionseigenschaften der neuen Sekundärlegierung AZC1231 zeigen, dass die bisher bestehende
Lücke im Recycling von Magnesiumlegierungen mit dieser Legierung geschlossen werden konnte. Es ist nunmehr möglich,
sowohl Altschrott als auch durch Kupfer und Nickel verunreinigte Magnesiumlieferungen durch einfaches Umschmelzen zu recyceln. Nachteilig wirkt sich die deutlich geringere
Duktilität im Vergleich zu AZ91 aus. 16 Bild., 7 Tab., 10 Qu.
ALUMINIUM 1/2 (2008)
Recycling
Karaaslan, A.; Lus, M.
Rissvermeidung bei der schmelzmetallurgischen Herstellung einer SiC-partikelverstärkten Aluminiumlegierung
A6063
MP Materials Testing 49 (2007) 11-12, S. 603-605
Leichtmetall-Verbundwerkstoffe gewinnen aufgrund ihrer
mechanisch-technologisch verbesserten Eigenschaften gegenüber den unverstärkten Matrixwerkstoffen zunehmend
an Bedeutung. Die vorliegende Arbeit befasst sich mit der
pulvermetallurgischen Herstellung eines mit Siliziumkarbid
verstärkten Aluminiumpulvers. Ein besonders gutes Ergebnis
wurde durch den Zusatz von 12 Volumenprozent Siliziumkarbid beobachtet. Im Rahmen der Untersuchungen wurden
neben dem Volumenanteil der SiC-Teilchen auch die Gießund Formtemperatur variiert, um bei der Herstellung von Verbundwerkstoffen die Verteilung des SiC in der Metallmatrix
zu optimieren. 4 Bild., 2 Tab., 7 Qu.
ALUMINIUM 1/2 (2008)
Pulver
Ji, J.; Jasnau, U.; Seyffarth, P.
Gefügeverbesserung im Schweißgut beim Nd:
YAG-Laserstrahl-MSG-Hybridschweißen von
Aluminiumlegierungen
Schweißen und Schneiden 59 (2007) Heft 11, S. 608-612
In den bisherigen vier Teilen der Veröffentlichungsreihe
standen bei der Qualitätssicherung von Nd:YAG-LaserstrahlMSG-Hybridschweißverbindungen an Aluminiumlegierungen die Nahtformparameter, die Porenfreiheit und die Gewährleistung der geforderten Einbrandtiefe im Zentrum. Da
das Hybridschweißen eine veränderte Wärmeeinbringung
gegenüber dem reinen Laserschweißen mit sich bringt, ist die
Frage der Gefügebeeinflussung ebenfalls von Interesse für die
Optimierung der Nahteigenschaften. Insbesondere ist zu untersuchen, inwieweit beim Laserstrahlhybridschweißen eine
unzulässige Kornvergröberung auftritt. 7 Bild., 10 Qu.
ALUMINIUM 1/2 (2008)
Verbinden
Dragulin, D.; Franke, R.; Hoffmann, O.; Fischer, D.; Dragulin, M.
Aluminium-Druckgusslegierung: Praktische Aspekte des
thermomechanischen Verhaltens der AlSi10MnMg
Druckgusspraxis 7/2007, S. 274-278
Die Legierung AlSi10MnMg weist ausgesprochen gute mechanische Eigenschaften, insbesondere Dehnung, im T7-Zustand
auf und ist dadurch eine optimale Lösung für viele Strukturteile, die durch den Druckgussprozess hergestellt werden
können. Zu dieser Klasse gehört die Legierung Silafont-36 von
Aluminium Rheinfelden, die höhere Werte als eine StandardAlSi10MnMg erreicht.
Particular physical properties and certain thermo-physical
processes have been examined for the predominantly utilised pressure die-casting alloy – AlSi10MnMg, as used in
106
the car industry. As a result, an in-depth study was carried out,
which chiefly concentrated upon the thermo-elastic effect of
this alloy, and upon its thermal effect in its zone of plasticity,
as well as the elastic energy generated during deformation
within this elasticity band. The study also entailed in-depth
analysis of its modulus with respect to tough show that the
alloy – AlSi10MnMg – features an outstanding array of physical properties (especially with elongation in the T7 state) and
therefore provides an optimum solution for many structural
components, which can be produced by way of the pressure
die-casting process. The alloy – Silafont-36 – produced by
Aluminium Rheinfelden, which attains even greater values
than those provided by using standard AlSi10MnMg, belongs
to this calssification. 8 Bild., 2 Tab., 2 Qu.
ALUMINIUM 1/2 (2008)
Werkstoffe, Metallkunde
Modulares Druckgusskonzept für leichte AluminiumZylinderkurbelgehäuse
Automotive Materials, 6/2007, S. 24-26
Für die kostengünstige Herstellung von Zylinderkurbelgehäusen aus Aluminium bietet sich der Druckguss an. Das Verfahren beschränkt sich bisher auf die Open-Deck-Bauweise
einschließlich der damit bauartbedingt gegebenen geringeren
Steifigkeit. Einen interessanten Lösungsansatz für „Downsizing“-Motoren präsentiert die KS Aluminium-Technologie AG
mit ihrem hoch flexiblen, serienfähigen „modularen Druckgusskonzept“. Hierbei kompensieren einzelne Konzeptbausteine prinzipbedingte Nachteile des herkömmlichen Druckgusses. Das Konzept ist generell geeignet, sehr große Mengen
hochwertiger Al-Zylinderkurbelgehäuse darzustellen.
ALUMINIUM 1/2 (2008)
Druckguss
Zak, O.; Zak, H.; Tonn, B.
Einsatz von rasch erstarrten Vorlegierungen zur Feinung
des Primärsiliziums übereutektischer AlSi17Cu4MgLegierung
Druckgusspraxis 7/2007, S. 303-308
Die im Rahmen dieser Arbeit gewonnenen neuen Erkenntnisse zeigen, dass definierte Zusätze an Zirkonium ein
enormes Potenzial für die Weiterentwicklung von AlSi-Standardlegierungen besitzen. In Versuchen mit der technischen
Legierung AlSi17Cu4Mg konnte die Größe der Primärsiliziumkristalle von 40-50 μm (Stand der Technik) auf 18 μm
reduziert werden. Dieser Effekt wurde erreicht, indem die
feinende Wirkung des Phosphors durch gezielte Zugabe des
Zirkoniums, welches in Form einer schnell erstarrten Vorlegierung AlZr1,3 zum Einsatz kam, unterstützt wurde. Die Vorlegierung AlZr1,3 wurde an einer vertikalen Stranggießanlage
mit einer Abkühlungsgeschwindigkeit von etwa 500 bis 600
K/s hergestellt und erfordert dank feiner Gefügeausbildung
und hohen Anteilen an in Aluminium-Matrix gelöstem Zirkonium beim Einsatz keine Überhitzung der Schmelze und keine
längere Haltezeiten. Durch kombinierte Zirkonium-und Phosphorzugabe konnte bei einem Phosphorgehalt von 100 ppm
zusätzlich zur Feinung des Primärsiliziums ein lamellares
AlSi-Eutektikum und damit eine deutliche Verbesserung der
Festigkeitseigenschaften im Gusszustand um 35 Prozent erzielt werden, die bei der Standardlegierung AlSi17Cu4Mg erst
nach der Wärmebehandlung T6 erreicht werden können.
New possibilities in influencing the micro-structure of hypereutectic AlSi17Cu4Mg, used for pistons and engine blocks,
are presented in this report, so that this material can meet the
increased demands imposed by the automobile industry. The
basic concept for the examinations, which were conducted
for this purpose, focused upon the fact that the smelts are to
be treated by means of rapidly solidifying AISi14- and AlZr1
hardening alloys, and that the effect of these hardening alloys upon the primary silicon phase needed to be examined
individually as well as jointly in conjunction with phospho-
ALUMINIUM · 1-2/2008
LITERATURE SERVICE
rus. It shows that the hardening alloys that were utilised, the
microstructures of which deviate considerably from those of
the bulk alloy materials, effect a notable refinement of the
primary silicon in the AlSi17Cu4Mg alloy. It was discovered
that upon adding the rapidly solidifying AlZr1,3 alloy, together
with phosphorus, a particularly marked effect was able to be
accomplished upon the primary silicon, and as a consequence
of this, has proven to have had an effect upon the physical
properties of the AlSi17Cu4Mg alloy, even in the state when it
is cast. The same comparable level of physical properties can
only be attained for “standard” alloy after T6 heat treatment
has been carried out. 7 ill., 3 tables., 19 sources.
ALUMINIUM 1/2 (2008)
Werkstoffe
Blauel, J. G.; Pfeiffer, W.; Varfolomeyev, I.; Veneziano, C.
Bruchmechanische Bewertung von rissbehafteten
Schweißkonstruktionen mit Eigenspannungen
MP Materials Testing 49 (2007) 11-12, S. 577-587
Die Anwendung bruchmechanischer Konzepte bei der
Festigkeitsbewertung von Schweißkonstruktionen erlaubt
prinzipiell neben den werkstoffspezifischen Effekten auch
die Wirkung von Eigenspannungen auf vorhandene Imperfektionen quantitativ zu erfassen. Mögliche Vorgehensweisen
bei den dafür durchzuführenden Einzelschritten – Eigenspannungsermittlung, Beanspruchungsanalyse, Kennwertermittlung und Versagensbewertung – werden beschrieben und
anhand von Beispielen demonstriert. 22 Bild., 23 Qu.
ALUMINIUM 1/2 (2008)
Verbinden
Sölter, J.; Reucher, G.
Werkstoffeinfluss auf die Spanbildung bei hohen
Schnittgeschwindigkeiten
MM Maschinenmarkt 43/2007, S. 46-51
Die Spanbildung und die Abhängigkeit der Prozesskräfte von
der Schnittgeschwindigkeit werden stark durch den Werkstoff und den Wärmebehandlungszustand des Werkstücks
beeinflusst. Außer thermischen und mechanischen Werkstoffeigenschaften entscheiden die Mikrostruktur und die
chemische Zusammensetzung des Werkstoffs, ob eine Spansegmentierung bei hohen Schnittgeschwindigkeiten einsetzt.
5 Bild, 7 Qu.
ALUMINIUM 1/2 (2008)
Umformen
Eder, Chr.
Thixocasting für komplexe Geometrien – Lösungen aus
einem Guss
Automotive Materials, 6/2007, S. 36-37
Aufgrund des steigenden Kostendrucks streben Automobilund Nutzfahrzeughersteller Lösungen an, bei denen sich komplexe Geometrien in Net-Shape-Qualität ohne nachfolgende
mechanische Bearbeitung realisieren lassen. Hierbei bietet
sich das Thixocasting der österreichischen SAG Thixalloy
Components an. Kriterien für Thixocasting-Anwendungen
sind: keine Teile mit geringen Qualitätsanforderungen, große
Unterschiede in den Wanddicken realisierbar, hohe Komplexität der Konstruktion und Integration von Funktionen,
Druckdichtigkeit durch porenarme Qualität, thermische
Behandlungen – hohe Schweißeignung, Wärmebehandlung,
hohe Anforderungen an die Oberfläche, Thixocasting kann
besonders Prozesse wie mechanische Bearbeitung, Schmieden, Feinguss, Kokillenguss, Vakuum-Druckguss substituieren, Ersatz von gefügten Blech- und Strangpressteilen durch
Integration.
ALUMINIUM 1/2 (2008)
Formguss
Schleich, R.; Papaioanu, A.; Liewald, M.
Karosserieblech sicher biegen
Blech, Rohre, Profile 11/2007, S. 22-23
Mechanische Werkstoffkennwerte sind in der Umformtechnik ein etabliertes Mittel zur Qualitätssicherung. Für biegedominierte Verfahren scheinen die konventionellen Kennwerte unzureichend. Am Institut für Umformtechnik (IFU )
in Stuttgart wird deshalb ein Prüfverfahren entwickelt, das
mit einer falzprozessnahen Kinematik und den relevanten
Spannungszuständen operiert. 4 Bild.
ALUMINIUM 1/2 (2008)
Umformen
Aluminium Oxid Stade – Auch nach 35 Jahren
eine der effizientesten Oxidfabriken in der Welt
Aluminium 83 (2007) 12, S. 26-31
Seit 1973 verarbeitet die Aluminium Oxid Stade GmbH Bauxit
zu Aluminiumoxid. Ursprünglich auf die Produktion von Oxid
für die Aluminiumelektrolyse ausgelegt, hat sich AOS längst
auf die Herstellung von chemischem Oxid und von Hydroxidprodukten fokussiert. Noch immer zählt AOS zu den technisch
und energetisch effizientesten Oxidfabriken in der Welt. 2007
wird erstmals die Produktion von 1 Mio. Tonnen erreicht. Von
den sechs in Europa produzierenden Oxidfabriken ist AOS bei
chemischen Produkten die Nummer 1. Der Beitrag geht auf die
anlagentechnischen Besonderheiten ein, mit denen sich AOS
vom Wettbewerb abhebt. Artikel dt./engl. 4 Fotos.
ALUMINIUM 1/2 (2008)
Gewinnung
Trommer, G.
Moderne Verfahren zum Schweißen von Aluminium Viele Wege führen zum Ziel
Aluminium 83 (2007) 12, S. 34-39
Das Fügeverfahren Schweißen spielt für den Konstruktionswerkstoff Aluminium eine dominierende Rolle. Von besonderer Bedeutung sind Anwendungen des Maschinen- und
Apparatebaus, im Verkehrswesen sowie im Bauwesen. Beim
Schweißen von Aluminium sind, im Vergleich zu Stahl, jedoch
einige Besonderheiten zu beachten. Sie hängen primär mit
den Werkstoffeigenschaften des Leichtmetalls zusammen. Der
Beitrag zeigt Zusammenhänge und Lösungen für Schweißverbindungen auf. Die Spannbreite der Ausführungen reicht vom
Elektroden-Handschweißen über das WIG-, Orbital-, Plasma-,
MIG-, CMT-, Laser-MSG-Lichtbogen-Schweißen bis hin zum
Widerstands-Punktschweißen „DeltaSpot“. 6 Fotos.
ALUMINIUM 1/2 (2008)
Schweißen
Für Schrifttum zum Thema „Aluminium“ ist der Gesamtverband der Aluminiumindustrie e.V. (GDA)
der kompetente Ansprechpartner. Die hier referierten Beiträge repräsentieren lediglich einen Ausschnitt aus dem umfassenden aktuellen Bestand der GDA-Bibliothek.
Die von der Aluminium-Zentrale seit den dreißiger Jahren kontinuierlich aufgebaute Fach-Bibliothek
wird duch den GDA weitergeführt, ausgebaut und auf die neuen Medien umgestellt. Sie steht allen
Interessenten offen.
Ansprechpartner ist Dr. Karsten Hein, E-Mail: [email protected]
ALUMINIUM · 1-2/2008
107
PAT E N T E
Patentblatt November 2007
Al-Si-Lotlegierungen und Ihre Verwendung für das Hartlöten von Aluminium und Aluminium/Stahl-Fügungen.
Umicore AG & Co. KG, 63457 Hanau,
DE. (B23K 35/28, EPA 1842619, EP-AT:
10.04.2007)
Neue Al-Cu-Li-Mg-Ag-Mn-Zr-Legierung
für Bauanwendungen, die hohe Festigkeit und hohe Bruchzähigkeit erfordern.
Alcan Rolled Products Ravenswood LLC,
Ravenswood, W.Va., US. (C22C 21/12,
EPA 1641953, EP-AT: 26.05.2004)
Dünne Bänder oder Bleche aus einer AlFe-Si-Legierung. Novelis,Inc., Toronto,
Ontario, CA. (C22C 1/00, PS 60 2004 005
045, EP 1644545, EP-AT: 19.07.2004)
Verfahren zum Tiefziehen von Teilen
aus Al-Mg-Legierungen. Alcan Rhenalu,
Paris, FR. (B21D 22/20, EP 1601478, EPAT: 24.02.2004)
Grobblech oder stranggepresstes Teil
aus Aluminium-Magnesium-Legierung.
Aleris Aluminium Koblenz GmbH, 56070
Koblenz, DE. (C22C 21/06, PS 697 03 441,
EP 0892858, EP-AT: 27.03.1997)
Kohlenwasserstoffumwandlungsverfahren unter Verwendung einer Aluminium und ein zweiwertiges Metall enthaltenden Katalysatorzusammensetzung.
Albemarle Netherlands B.V., Amersfoort,
NL. (B01J 21/16, ) EPA 1838436, EP-AT:
19.11.2005)
Aluminium-Gusslegierung.
EADS
Deutschland GmbH, 85521 Ottobrunn,
DE; Aluminium Rheinfelden GmbH,
79618 Rheinfelden, DE. (C22C 21/06, PS
103 52 932, AT: 11.11.2003)
Wärmebehandlung von Druckgussstücken aus Aluminiumlegierung. Commonwealth Scientific and Industrial Research
Organisation, Campbell, AU. (C22F 1/04,
EPA 1844174, EP-AT: 19.12.2005)
In einem Aluminium-Gussteil einzugießender Grauguss-Rohling und entsprechendes Gussverfahren. Audi AG, 85057
Ingolstadt, DE. (F02F 1/00, OS 198 36
706, AT: 13.08.1998)
Aluminiumlegierung für Gussteil. Dr.Ing.
h.c. F. Porsche AG, 70435 Stuttgart, DE.
(C22C 21/02, EPA 1840233, EP-AT:
12.12.2006)
Behandeln von Abstandhaltern in gestapelten Aluminium-Blöcken. Alcoa Inc.,
Pittsburgh, Pa., US. (C21D 1/70, PS 601
23 737, EP 1215289, EP-AT: 11.12.2001)
Verfahren zum Hartlöten einer Aluminium-Magnesium-Legierung mit einem
Kalium-Fluorozinkat
enthaltenden
Flussmittel. Denso Corp., Kariya, Aichi,
JP; Sumitomo Light Metal Industries,
Ltd., Tokio/Tokyo, JP. (B23K 1/00, PS
60 2004 004 428, EP 1466691, EP-AT:
31.03.2004)
Randspannungsentlastung von Grobblech aus Aluminium. Alcan Rhenalu,
Paris, FR. (C22F 1/00, PS 603 12 373, EP
1567685, EP-AT: 04.12.2003)
Wärmebehandlungsverfahren für Blech
aus Aluminium-Legierung. Novelis, Inc.,
Toronto, Ontario, CA. (C22F 1/05, PS 695
20 007, EP 0805879, EP-AT: 05.09.1995)
Hochfestes Blech aus Al-Zn-Cu-Mg-Legierung mit geringen inneren Spannungen.
Alcan Rhenalu, Paris, FR. (C22F 1/053,
EPA 1838891, EP-AT: 09.12.2005)
Verfahren zum Auswechseln einer Anode in einer Zelle zur elektrolytischen
Herstellung von Aluminium mit Einstellung der Position der Anode und Wartungsvorrichtung dafür. E.C.L., Ronchin,
FR. (C25C 3/06, EPA 1838901, EP-AT:
12.10.2005)
Endloskapillarrohr in Aluminiumlegierung, Drosselventil mit diesem Endloskapillarrohr in Aluminiumlegierung und
Aluminiumlegierung. Aro Tubi Trafilerie
S.p.A., Milano, IT; C.R. S.r.l., Moniga Del
Garda, IT. (F25B 41/06, EPA 1840487,
EP-AT: 31.03.2006)
Verfahren und Vorrichtung zum Vorbereiten eines Bauteils aus oberflächlich
oxidierendem Metall, insbesondere aus
Aluminium, zum Schweißen oder Kleben. SLE Electronic GmbH, 94481 Grafenau, DE. (B08B 3/00, PS 10 2006 009
993, AT: 03.03.2006)
6xxx-Aluminiumlegierung.
Comalco
Aluminium Ltd., Melbourne, Victoria,
AU. (C22C 21/02, EPA 1840234, EP-AT:
04.07.1997)
Vorrichtung und Verfahren zur Sicherung von als Paket gelagerten Aluminium-Stranggussprodukten, so genannten Masseln, zu Transportzwecken. Signode System GmbH, 46535 Dinslaken,
DE. (B65D 85/62, PS 10 2006 038 996,
AT: 21.08.2006)
Gummibauteil mit Metallkomponente
auf Basis von Aluminium und Verfahren zum Herstellen desselben. Tokai
Rubber Industries, Ltd., Komaki, Aichi,
JP. (C23C 30/00, OS 10 2007 020 030,
AT: 27.04.2007)
108
Platte aus einer Aluminiumlegierung
und Herstellungsverfahren dafür. Kabushiki Kaisha Kobe Seiko Sho, Kobe,
Hyogo, JP. (C22C 21/06, EPA 1842935,
EP-AT: 13.01.2006)
Lötmaterial für Aluminiumlegierung.
Aleris Aluminum Koblenz GmbH, 56070
Koblenz, DE. (B23K 35/28, EPA 1843872,
EP-AT: 10.01.2006)
Abschreckunempfindliche Aluminiumlegierung sowie Verfahren zum Herstellen
eines Halbzeuges aus dieser Legierung.
Otto Fuchs KG, 58540 Meinerzhagen,
DE. (C22C 21/10, EP 1 683 882, EP-AT:
21.11.2005)
Anodisierende
Aluminiumlegierung.
Short Brothers PLC, Belfast, Nordirland,
GB. (C25D 11/12, EPA 1836331, EP-AT:
10.01.2006)
Partikelverstärkte Magnesium- oder
Aluminiumlegierung. Bayerische Motoren Werke AG, 80809 München, DE.
(C22C 49/04, OS 10 2006 023 041, AT:
17.05.2006)
Aluminiumlegierung, Verbindungs- und
Halteeinrichtung für Glaskonstruktionsvorhaben. Ting, Jen-Chieh, Kaohsiung
City, TW. (E04B 1/38, GM 20 2007 009
426, AT: 05.07.2007)
Warmfeste Aluminiumlegierung. Aluminium Rheinfelden GmbH, 79618 Rheinfelden, DE. (C22C 21/08, EP 1 757 709,
EP-AT: 28.02.2006)
Druckgusserzeugnis aus Aluminiumlegierung. Corus Aluminium Voerde
GmbH, 46562 Voerde, DE; Corus Aluminium Walzprodukte GmbH, 56070 Koblenz, DE. (C22C 21/06, PS 601 26 529,
EP 1138794, EP-AT: 15.03.2001)
Aluminiumlegierung geeignet für Bleche
und ein Verfahren zu deren Herstellung.
Furukawa-Sky Aluminum Corp., Tokio/
Tokyo, JP; Honda Giken Kogyo K.K., Tokyo, JP. (C22C 21/00, PS 602 15 579, EP
1260600, EP-AT: 15.05.2002)
Wärmetauscher. Showa Denko K.K., Minato-ku, Tokyo, JP. (F28F 9/02, WO 2006
059783, WO-AT: 30.11.2005)
Vorrichtung zur Fertigung von aus
Leichtmetall gefertigten Holmen eines
Rahmens und/oder eines Flügels eines
Fensters. Aug. Winkhaus GmbH & Co.
KG, 48291 Telgte, DE. (B21D 53/74, EPA
1839770, EP-AT: 22.12.2006)
Kühlkokille zum Vergießen von Leichtmetall-Gusswerkstoffen und Verwendung einer solchen Kokille sowie eines
Gusseisenwerkstoffs. Hydro Aluminium Deutschland GmbH, 51149 Köln,
DE. (B22C 9706, EPA 1841554, EP-AT:
27.01.2006)
Verfahren zum Gießen von Bauteilen aus
Leichtmetall nach dem Kippgießprinzip.
Rautenbach-Guß Wernigerode GmbH,
38855 Wernigerode, DE. (B22D 23/00,
EP 1 742 752, EP-AT: 30.03.2005)
ALUMINIUM · 1-2/2008
PAT E N T E
Verbundmaterial aus Leichtmetall und
mit Kohlenstofffasern verstärktem
Kunststoff. Toray Industries, Inc., Tokio/
Tokyo, JP. (B32B 15/08, PS 698 36 259,
EP 0938969, EP-AT: 20.08.1998)
Anordnung zur Bildung einer Kreuzverbindung zwischen einem Längspfosten
und einem Querpfosten bei einem Fenster oder einer Türe aus Kunststoff oder
Leichtmetall. PHI Technik für Fenster
und Türen GmbH, 91459 Markt Erlbach,
DE. (E06B 3/964, GM 299 14 966, AT:
26.08.1999)
Magnesiumlegierungen für die Wasserstoffspeicherung. The University of
Queensland, Santa Lucia, Queensland,
AU. (C22C 23/00, EPA EP 1838887, EPAT: 02.12.2005)
Hochfeste Legierung auf Aluminiumbasis und ein daraus hergestelltes Produkt.
Federalnoe Gosudarstvatelsky Institut
Unitarnoe Predpriyatie “Vserossiisky
Nauchno-Issledovatelsky Institut Aviatsionnykh Materialov”, Moskau/Moscow,
RU; Otkrytoe Aktsionernoe Obschestvo
“Samarsky Metallurgichesky Zavod”, Samara, RU. (C22C 21/10, PS 601 20 987,
EP 1306455, EP-AT: 25.07.2001)
Aus mindestens zwei vorgegossenen
Abschnitten zusammengesetztes Bauteil und Verfahren zu seiner Herstellung.
Hydro Aluminium Mandl&Berger GmbH,
Linz, AT. (B22D 19/04, OS 10 2005 059
309, AT: 09.12.2005)
Profil aus einem Leichtmetallwerkstoff
mit an diesem verlaufenden Rohrelementen. Alcan Technology & Management AG, Neuhausen am Rheinfall,
CH.(E04D 3/30, GM 20 2007 008 488,
AT: 13.06.2007)
Verfahren zur Herstellung von Aluminiumverbundwerkstoff. Aluminium Core
Technology Co., Ltd., Tokyo, JP; Nippon Light Metal Co. Ltd., Tokio/Tokyo,
JP. (B22F 3/24, EPA 1837103, EP-AT:
28.12.2005)
Verfahren zur Herstellung von grobkörnigem Aluminiumhydroxyd. Alcan
Technology & Management AG, Neuhausen am Rheinfall, CH. (C01F 7/14, PS 698
36 962, EP 0997435, EP-AT: 28.10.1998)
Dachreling sowie Verfahren zur Herstellung einer solchen Dachreling. WKW
Erbslöh Automotive GmbH, 42349 Wuppertal, DE. (B60R 9/04, OS 10 2006 025
933, AT: 10.05.2006)
Inerte Cermet-Anode zur Verwendung
in der elektrolytischen Herstellung von
Metallen. Alcoa Inc., Pittsburgh, Pa., US.
(C25C 3/12, PS 600 33 837, EP 1226287,
EP-AT: 27.10.2000)
Magnesiumlegierung und dazugehöriges Herstellungsverfahren. Biotronik VI
Patent AG, Baar, CH. (C22C 23/04, EPA
1840235, EP-AT: 22.03.2007)
Gießform, Vorrichtung und Verfahren
zum Vergießen von Metallschmelze.
Hydro Aluminium Alucast GmbH, 66763
Dillingen, DE. (B22C 9/08, PS 10 2005
010 838, AT: 07.03.2005)
Wärmetauscherprofil. Erbslöh Aluminium GmbH, 42553 Velbert, DE. (F28F
1/02, EPA 1840494, EP-AT: 23.03.2007)
Verfahren und Stellgliedvorrichtung.
Norsk Hydro ASA, Oslo, NO. (E21B 43/32,
EP 1 718 842, EP-AT: 11.02.2005)
Funktionale Direktbeschichtung einer
Aluminiumfolie. Hydro Aluminium
Deutschland GmbH, 51149 Köln, DE.
(B21C 47/26, EPA 1837091, EP-AT:
09.03.2007)
Verbundprofil mit einem Tragkörper aus
Leichtmetallwerkstoff sowie einem Profilband und Verfahren zum Herstellen
des Verbundprofils. Alcan Technology &
Management Ltd., Neuhausen am Rheinfall, CH. (B60M 1/30 und B21K 9/00, OS
10 2005 063 436 und PS 10 2005 004 547
und EPA 1843866, AT: 31.01.2005 und
EP-AT: 20.12.2005)
Wasserkühlsystem für eine Stranggießvorrichtung. Norsk Hydro ASA, Oslo/
Osló, NO. (B22D 11/049, PS 601 24 031,
EP 1157765, EP-AT: 14.05.2001)
Wärmetauscher. Showa Denko K.K., Tokio/Tokyo, JP. (F28D 1/053, WO 2006
070923, WO-AT: 27.12.2005)
Aluminiummaterial für eine Elektrode
eines elektrolytischen Kondensators,
Verfahren zur Herstellung von Elektrodenmaterial für einen elektrolytischen
Kondensator, Anodenmaterial für einen
elektrolytischen Aluminiumkondensator
und elektrolytischer Aluminiumkondensator. Showa Denko K.K., Tokio/Tokyo,
JP. (C22C 21/00, EPA 1841892, EP-AT:
21.12.2005)
Verpackungsbeutel
mit
Umverpackung. Alcan Technology & Management Ltd., Neuhausen am Rheinfall,
CH. (B65D 33/02, EPA 1714892, EP-AT:
24.11.2005)
Profilelement zum Befestigen einer
Stoßstange an Längsträgern eines Fahrzeuges sowie Verfahren dazu. Alcan
Technology & Management AG, Neuhausen am Rheinfall, CH. (B60R 19/34, OS 10
2006 019 654, AT: 25.04.2006
Schlauchförmiges Glied mit einem aus
mehreren Metalldrähten oder -Röhren
bestehenden Umfang. Norsk Hydro
ASA, Oslo, NO. (F16L 11/14, EP 1 563
215, EP-AT: 27.10.2003)
ALUMINIUM · 1-2/2008
Flexibles Rohr oder flexibler Schlauch.
Alcan Deutschland GmbH, 37075 Göttingen, DE. (F16L 59/153, PS 502 08 527, EP
1286102, EP-AT: 14.08.2002)
Einrichtung und Verfahren zur Sammlung der Abflüsse einer Elektrolysezelle. Aluminium Pechiney, Voreppe,
FR. (C25C 3/22, EPA 1845175, EP-AT:
11.04.2006)
Schaltungsanordnung zum Steuern
eines Krustenbrechers. VAW Aluminium-Technologie GmbH, 53117 Bonn,
DE. (C25C 3/20, GM 299 10 803, AT:
21.06.1999)
Verfahren zum Gießen eines Artikels.
Mahle Powertrain Ltd., St. James, Northampton, GB. (B22C 9/02, EPA 1841553,
EP-AT: 08.12.2005)
Innere Rohrprüfvorrichtung und Verfahren. Norsk Elektro Optikk AS, Skarer,
NO. (F16L 55/26, PS 603 11 977, EP
1497585, EP-AT: 04.04.2003)
Aluminiumlagerlegierungsteil.
Daido
Metal Co. Ltd., Nagoya, Aichi, JP. (C22C
21/00, PS 101 35 895, AT: 24.07.2001)
Patentblatt Dezember 2007
Verfahren zum MIG Schweißen von AlLegierungen mit Ar/He/O2-Schutzgas.
L‘Air Liquide Société Anonyme pour
l‘Etude et l‘Exploitation des Procédés
Georges Claude, Paris, Cedex, FR. (B23K
9/16, EP 1 166 940, EP-AT: 11.06.2001
Druckgießen von Aluminium. Commonwealth Scientific and Industrial Research
Organisation, Campbell, AU: (B22D
17/20, PS 601 28 114, EP 1320434, EPAT: 24.08.2001)
Verfahren zum Aufbringen einer Beschichtung auf überlappten Oberflächen
von Bauelementen aus Aluminium-Legierung sowie derart beschichtete überlappte Oberflächen. McDonnell Douglas
Corp., Seal Beach, Calif., US. (C22F 1/04,
PS 699 35 480, EP 0985737, EP-AT:
25.08.1999)
Aluminium-Zink-Magnesium-ScandiumLegierungen und Herstellungsverfahren
dafür. Langan, Timothy, Catonsville, Md.,
US. (C22C 21/10, EPA 1848835, EP-AT:
01.02.2006)
Neue Fe-Al-Legierung und Herstellungsverfahren dafür. Okanda, Yoshihira, Nishinomiya, JP. (C21D 9/46, EPA 1847624,
EP-AT: 10.02.2006)
Verfahren unter Verwendung von ausgewählten Kohlen zur Reaktion ©
109
PAT E N T E
mit Al2O- und Al-Dämpfen bei der carbothermischen Produktion von Aluminium. Alcoa Inc., Pittsburgh, Pa., US; Elkem
AS, Oslo, NO; Carnegie Mellon University, Pittsburgh, Pa., US. (C22B 21/02, EP
1 689 895, EP-AT: 02.12.2004)
Verfahren zum Diffusionsfügen von Magnesium/Aluminium-Bauteilen. General
Motors Corp., Detroit, Mich., US. (B23K
35/28, PS 602 16 369, EP 1273385, EPAT: 08.05.2002)
Verbindung von Profilen, insbesondere
Aluminium-Strangpressprofilen im Fahrzeugbau. Siemens AG, 80333 München,
DE. (F16B 5/00, EPA 1688626, EP-AT:
09.01.2006)
Verfahren zum Versiegeln von mit Phosphorsäure anodisiertem Aluminium. The
United States of America as represented
by the Secretary of the Navy, Lilj Patuxent River, Md., US. (C23C 22/05, EPA
1853750, EP-AT: 14.11.2005)
Verbundblech aus Aluminium. Aleris
Aluminium Duffel BVBA, Duffel, BE.
(B32B 15/01, EPA 1852251, EP-AT:
02.05.2006)
Metallisierung integrierter Schaltungen
unter Verwendung einer Titan-Aluminium-Legierung. Micron Technology, Inc.,
Boise, Id., US. (H01L 23/532, OS 101 52
913, AT: 26.10.2001)
Verbundwerkstoff aus einer hochfesten
Aluminiumlegierung. Visteon Global
Technologies, Inc., Dearborn, Mich., US.
(C22C 21/04, PS 10 2004 033 457, AT:
05.07.2004)
Drehtrommelofen zum Umschmelzen
von Aluminium. Metallhüttenwerke
Bruch GmbH, 44145 Dortmund, DE.
(F27B 7/20, GM 20 2004 004 478, AT:
19.03.2004)
Aluminiumhaltige Fällungskieselsäure
mit einstellbarem BET/CTAB-Verhältnis.
Evonik Degussa GmbH, 40474 Düsseldorf, DE. (C01B 33/193, PS 503 02 199,
EP 1513768, EP-AT: 07.06.2003)
Vorrichtung und Drehsicherung von
Dosenenden in einem Downstaker und
entsprechendes Verfahren. Alcoa Inc.,
Pittsburgh, Pa., US. (B65D 1/00, PS 603
13 345, EP 1545987, EP-AT: 05.08.2003)
Vorrichtung zum Entwässern der Rahmenstöße einer Vorhangfassade. Norsk
Hydro ASA, Oslo, NO. (E04B 2/88, EPA
1849928, EP-AT: 13.02.2007)
Oberflächenbehandlungsmittel und Verfahren zum Entfernen der beim Ätzen
von Druckgussteilen aus Aluminium
anfallenden Si-Komponente und reduzierten Metallsalze. Jeonyoung Co., Ltd.,
Ansan, Kyounggi, KR. (C11D 7/18, PS 602
16 291, EP 1421164, EP-AT: 25.07.2002)
Verfahren zum Sintern von Aluminiumund Aluminiumlegierungsteilen. Ex One
Corp., Irwin, Pa., US. (C22C 1/04, EP 1
694 875, EP-AT: 01.12.2003)
Aluminium-Elektrolytkondensator und
Herstellungsverfahren. Matsushita Electric Industrial Co., Ltd., Kadoma, Osaka, JP. (H01G 9/008, PS 699 34 063, EP
0986078, EP-AT: 03.09.1999)
Titan-Aluminium-Mischoxidpulver. Evonik Degussa GmbH, 40474 Düsseldorf,
DE. (C01G 25/02, OS 10 2004 061 702
und OS 10 2004 061 703 und OS 10
2004 062 104, AT: 22.12.2004 und AT:
23.12.2004)
Verfahren zur Herstellung von anorganisch gebundenen Formen und Kernen
für Gießereizwecke, insbesondere für
das Leichtmetall-Gießen. Otto-von-Guericke-Universität Magdeburg, 39106
Magdeburg, DE. (B22C 1/18, OS 10 2006
026 796, AT: 07.06.2006)
Stabilisiertes Aluminium-Zirkon-Mischoxidpulver. Evonik Degussa GmbH,
40474 Düsseldorf, DE. (C01G 1/02, OS
10 2005 040 156, AT: 25.08.2005)
Verpackungsbeutel. Alcan Technology &
Management Ltd., Neuhausen am Rheinfall, CH. (B65D 33/02, EPA 1854732, EPAT: 12.05.2006)
Profilsystem, Halter und Verfahren zur
Befestigung für und Austausch von SGVerglasung (Structural Glazing) von der
Rauminnenseite für Aluminium-GlasFassaden und andere SG-Metall-GlasFassaden. inotec Engineering GmbH,
74532 Ilshofen, DE. (E04B 2/96, OS 10
2006 026 283, AT: 02.06.2006)
Verfahren zur Herstellung von Verpackungsbeuteln. Alcan Technology & Management Ltd., Neuhausen am Rheinfall,
CH. (B65D 75/50, EP 1 547 935, EP-AT:
23.12.2003)
Durchsichtige Aluminium-Titanoxid-Beschichtung und / oder AluminiumoxidBeschichtung mit einer Rutilstruktur.
Philips Intellectual Property & Standards
GmbH, 20099 Hamburg, DE. (C03C
17/24, PS 60 2004 005 571, EP 1590305,
EP-AT: 21.01.2004)
110
Verfahren zum Abtrennen von Abfallschichten von plattierten Bändern durch
Walzplattieren. Alcan Rhenalu, Paris, FR.
(B21B 47/04, PS 60 2004 003 371, EP
1628786, EP-AT: 01.06.2004)
Vorrichtung und Verfahren zum Aufbringen von Sprühpumpen und dergleichen auf Behälter und zum Verschließen
derselben. Alcoa Deutschland GmbH,
67547 Worms, DE. (B65B 7/28, EP 1 761
434, EP-AT: 20.06.2005)
Profilverbindung, insbesondere für Aluminium-Leichtbau. Philippi, Gerd, 66793
Saarwellingen, DE. (F16B 7/00, GM 20
2004 013 726, AT: 03.09.2004)
Vakuumhartlötverfahren für Aluminium. Denso Corp., Kariya, Aichi, JP. (F27B
5/05, PS 4404263, AT:10.02.1994)
Verfahren zum Biegen eines bahnförmigen Stehfalzprofilbleches und Einrichtung zur Durchführung dieses Verfahrens. Corus Bausysteme GmbH, 56070
Koblenz, DE. (B21D 7/08, EP 1 631 399,
EP-AT: 07.05.2004)
Verfahren zur Herstellung eines halbfesten Thixogießmaterials. Honda Giken
Kogyo K.K., Tokyo, JP. (C21D 1/32, PS 697
37 048, EP 1460138, EP-AT: 02.09.1997)
Verfahren zur Herstellung eines Behälters aus Aluminiumblechen. Hydro Aluminium Deutschland GmbH, 51149 Köln,
DE. (B21D 51/18, OS 10 2006 026 828,
AT: 07.06.2006)
Verfahren und Vorrichtung zur Herstellung eines Sandwichpaneels und
nach diesem Verfahren hergestelltes
Sandwichpaneel. Corus Technology BV,
IJmuiden, NL. (E04 2/292, EP 1 233 114,
EP-AT: 08.02.2002)
Vorrichtung zum Fügen von mindestens
zwei Bauteilen aus artverschiedenen
Werkstoffen mit einem mit mindestens
einem als Schneide ausgebildeten Formelement aufweisenden Stift. Hydro Aluminium Deutschland GmbH, 51149 Köln,
DE. (B23K 20/12, EPA 1849552, EP-AT:
27.04.2006)
Fortsetzung der Dezember-Auswertung in
der nächsten Ausgabe der ALUMINIUM.
ALUMINIUM veröffentlicht unter
dieser Rubrik regelmäßig einen Überblick über wichtige, den Werkstoff
Aluminium betreffende Patente. Die
ausführlichen Patentblätter und auch
weiterführende Informationen dazu
stehen der Redaktion nicht zur Verfügung. Interessenten können diese
beziehen oder einsehen bei der
Mitteldeutschen Informations-, Patent-, Online-Service GmbH (mipo),
Julius-Ebeling-Str. 6,
D-06112 Halle an der Saale,
Tel. 0345/29398-0
Fax 0345/29398-40,
www.mipo.de
Die Gesellschaft bietet darüber hinaus
weitere „Patent“-Dienstleistungen an.
ALUMINIUM · 1-2/2008
International Journal for Industry, Research and Application
How do your products and services come to appear every month in the
list of supply sources, on the internet – www.Alu-web.de – and in the
annual list of supply sources published by ALUMINIUM ?
�
�
�
Please mark the main group relevant to you
❑
Smelting technology
❑
Rolling technology
❑
Extrusion
❑
Foundry
Indicate the sub-group and/or key word
(if necessary, ask us for the list of key words)
_______________________
_______________________
_______________________
_______________________
_______________________
_______________________
Enter your text, not forgetting your on-line address:
Line 1: ............................................................................................................................................
Line 2: ............................................................................................................................................
Line 3: ............................................................................................................................................
Line 4: ............................................................................................................................................
Line 5: ............................................................................................................................................
Line 6: ............................................................................................................................................
(Maximum 35 characters per line, including spaces.
Price per line for each issue EUR 5,00 + VAT – minimum order 10 issues = 1 year.
Logos are calculated according to the lines they occupy: 1 line = 2 mm).
_______________________________________________________________
Place/Date
Company stamp / Signature
�
… and send this form to us by fax or post:
Fax number
+49-511/7304-157
For information
Tel.: -142
Giesel Verlag GmbH, ALUMINIUM
Rehkamp 3, D-30916 Isernhagen
We will gladly send you a quotation!
LIEFERVERZEICHNIS
1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
1.10
1.11
1.12
1.13
1.14
1.15
Smelting technology
Hüttentechnik
Raw materials
Storage facilities for smelting
Anode production
Anode rodding
Casthouse (foundry)
Casting machines
Current supply
Electrolysis cell (pot)
Potroom
Laboratory
Emptying the cathode shell
Cathode repair shop
Second-hand plant
Aluminium alloys
Storage and transport
1.1 Raw Materials
Rohstoffe
„ Raw Materials
Rohstoffe
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
1.10
1.11
1.12
1.13
1.14
1.15
Rohstoffe
Lagermöglichkeiten in der Hütte
Anodenherstellung
Anodenschlägerei
Gießerei
Gießmaschinen
Stromversorgung
Elektrolyseofen
Elektrolysehalle
Labor
Ofenwannenentleeren
Kathodenreparaturwerkstatt
Gebrauchtanlagen
Aluminiumlegierungen
Lager und Transport
„ Unloading/Loading equipment
Entlade-/Beladeeinrichtungen
Möller Materials Handling GmbH
Internet: www.moeller-mh.com
see Storage facilities for smelting 1.2
„ Open top and closed
type baking furnaces
Offene und geschlossene Ringöfen
1.3 Anode production
Anodenherstellung
TRIMET ALUMINIUM AG
Niederlassung Düsseldorf
Heinrichstr. 155
D-40239 Düsseldorf
Tel.: +49 (0) 211 / 96180-0
Fax: +49 (0) 211 / 96180-60
Internet: www.trimet.de
Outotec GmbH
RIEDHAMMER GmbH
D-90332 Nürnberg
E-Mail: [email protected]
Internet: www.riedhammer.de
see Storage facilities for smelting 1.2
„ Auto firing systems
Automatische Feuerungssysteme
1.4 Anode rodding
Anodenanschlägerei
Outotec GmbH
see Storage facilities for smelting 1.2
1.2 Storage facilities for
smelting
Lagermöglichkeiten
in der Hütte
Möller Materials Handling GmbH
Haderslebener Straße 7
D-25421 Pinneberg
Telefon: 04101 788-0
Telefax: 04101 788-115
E-Mail: [email protected]
Internet: www.moeller-mh.com
Kontakt: Herr Dipl.-Ing. Timo Letz
Outotec GmbH
Phone: +49 (0) 2203 / 9921-0
www.outotec.com
„ Conveying systems bulk materials
Förderanlagen für Schüttgüter
(Hüttenaluminiumherstellung)
Möller Materials Handling GmbH
Internet: www.moeller-mh.com
see Storage facilities for smelting 1.2
112
RIEDHAMMER GmbH
D-90332 Nürnberg
E-Mail: [email protected]
Internet: www.riedhammer.de
„ Removal of bath residues from
the surface of spent anodes
Entfernen der Badreste von der Oberfläche der verbrauchten Anoden
„ Exhaust gas treatment
Tel. +47 22 12 70 00
Internet: www.environment.power.alstom.com
GLAMA Maschinenbau GmbH
Hornstraße 19
D-45964 Gladbeck
Telefon 02043 / 9738-0
Telefax 02043 / 9738-50
„ Hydraulic presses for prebaked
anodes / Hydraulische Pressen zur
„ Transport of finished anode
elements to the pot room
Abgasbehandlung
ALSTOM Norway AS
Herstellung von Anoden
LAEIS GmbH
Am Scheerleck 7, L-6868 Wecker, Luxembourg
Phone: +352 27612 0
Fax: +352 27612 109
E-Mail: [email protected]
Internet: www.laeis-gmbh.com
Contact: Dr. Alfred Kaiser
Transport der fertigen Anodenelemente in Elektrolysehalle
Hovestr. 10 . D-48431 Rheine
Telefon + 49 (0) 59 71 58-0
Fax
+ 49 (0) 59 71 58-209
E-Mail [email protected]
Internet www.windhoff.de
ALUMINIUM · 1-2/2008
LIEFERVERZEICHNIS
1.5 Casthouse (foundry)
Gießerei
„ Degassing, filtration and
grain refinement
Entgasung, Filtern, Kornfeinung
maerz-gautschi
Industrieofenanlagen GmbH
see Casting Equipment 3.1
HERTWICH ENGINEERING GmbH
Maschinen und Industrieanlagen
Weinbergerstraße 6, A-5280 Braunau am Inn
Phone +437722/806-0
Fax +437722/806-122
E-Mail: [email protected]
Internet: www.hertwich.com
Drache Umwelttechnik
GmbH
Werner-v.-Siemens-Straße 9/24-26
D 65582 Diez/Lahn
Telefon 06432/607-0
Telefax 06432/607-52
Internet: www.drache-gmbh.de
„ Dross skimming of liquid metal
Abkrätzen des Flüssigmetalls
GLAMA Maschinenbau GmbH
see Anode rodding 1.4
INOTHERM INDUSTRIEOFENUND WÄRMETECHNIK GMBH
Konstantinstraße 1a
D 41238 Mönchengladbach
Telefon +49 (02166) 987990
Telefax +49 (02166) 987996
E-Mail: [email protected]
Internet: www.inotherm-gmbh.de
„ Furnace charging with
molten metal
Ofenbeschickung mit Flüssigmetall
GLAMA Maschinenbau GmbH
see Anode rodding 1.4
„ Melting/holding/casting furnaces
Schmelz-/Halte- und Gießöfen
OTTO JUNKER GmbH
see Extrusion 2
maerz-gautschi
Industrieofenanlagen GmbH
see Casting Equipment 3.1
Vollert Anlagenbau
GmbH + Co. KG
Stadtseestraße 12
D-74189 Weinsberg
Tel.
+49 (0) 7134 / 52-220
Fax
+49 (0) 7134 / 52-222
E-Mail [email protected]
Internet www.vollert.de
Windhoff Bahn- und
Anlagentechnik GmbH
see Anode rodding 1.4
„ Transport of liquid metal
to the casthouse
Transport von Flüssigmetall
in Gießereien
GLAMA Maschinenbau GmbH
see Anode rodding 1.4
MARX GmbH & Co. KG
www.marx-gmbh.de
see Melt operations 4.13
SIGNODE® SYSTEM GMBH
Packaging Equipment
Non-Ferrous Specialist Team DSWE
Magnusstr. 18, 46535 Dinslaken/Germany
Telefon: +49 (0) 2064 / 69-210
Telefax: +49 (0) 2064 / 69-489
E-Mail: [email protected]
Internet: www.signode.com
Contact: Mr. Gerard Laks
Stopinc AG
Bösch 83 a
CH-6331 Hünenberg
Tel. +41/41-785 75 00
Fax +41/41-785 75 01
E-Mail: [email protected]
Internet: www.stopinc.ch
„ Bone ash / Knochenasche
IMPERIAL-OEL-IMPORT
Bergstraße 11, D 20095 Hamburg
Tel. 040/338533-0, Fax: 040/338533-85
E-Mail: [email protected]
„ Clay / Tonerde
HERTWICH ENGINEERING GmbH
see Casthouse (foundry) 1.5
Vollert Anlagenbau
GmbH + Co. KG
see Transfer to the casting furnace 1.5
maerz-gautschi
Industrieofenanlagen GmbH
see Casting Equipment 3.1
Windhoff Bahn- und
Anlagentechnik GmbH
see Anode rodding 1.4
„ Treatment of casthouse
off gases
Behandlung der Gießereiabgase
Sistem Teknik Ltd. Sti.
DES San. Sit. 102 SOK No: 6/8
Y.Dudullu, TR-34775 Istanbul/Turkey
Tel.: +90 216 420 86 24
Fax: +90 216 420 23 22
E-Mail: [email protected]
Internet: www.sistemteknik.com
maerz-gautschi
Industrieofenanlagen GmbH
see Casting Equipment 3.1
1.6 Casting machines
Gießmaschinen
„ Metal treatment in the
holding furnace
OTTO JUNKER GmbH
Metallbehandlung in Halteöfen
maerz-gautschi
Industrieofenanlagen GmbH
see Casting Equipment 3.1
„ Pig casting machines
(sow casters)
„ Transfer to the casting furnace
maerz-gautschi
Industrieofenanlagen GmbH
see Casting Equipment 3.1
Überführung in Gießofen
see Extrusion 2
Masselgießmaschine (Sowcaster)
GLAMA Maschinenbau GmbH
see Anode rodding 1.4
TRIMET ALUMINIUM AG
Niederlassung Düsseldorf
Heinrichstr. 155
D-40239 Düsseldorf
Tel.: +49 (0) 211 / 96180-0
Fax: +49 (0) 211 / 96180-60
Internet: www.trimet.de
ALUMINIUM · 1-2/2008
Drache Umwelttechnik
GmbH
Werner-v.-Siemens-Straße 9/24-26
D 65582 Diez/Lahn
Telefon 06432/607-0
Telefax 06432/607-52
Internet: www.drache-gmbh.de
see Equipment and accessories 2.11
Outotec GmbH
see Storage facilities for smelting 1.2
113
LIEFERVERZEICHNIS
„ Rolling and extrusion ingot
and T-bars
„ Sawing / Sägen
Elektrolysehalle
Formatgießerei (Walzbarren oder
Pressbolzen oder T-Barren)
HERTWICH ENGINEERING GmbH
see Casthouse (foundry) 1.5
HERTWICH ENGINEERING GmbH
see Casthouse (foundry) 1.5
maerz-gautschi
Industrieofenanlagen GmbH
see Casting Equipment 3.1
maerz-gautschi
Industrieofenanlagen GmbH
see Casting Equipment 3.1
T.T. Tomorrow Technology S.p.A.
Via dell’Artigianato 18
Due Carrare, Padova 35020, Italy
Telefon +39 049 912 8800
Telefax +39 049 912 8888
E-Mail: [email protected]
Contact: Giovanni Magarotto
„ Anode changing machine
Anodenwechselmaschine
GLAMA Maschinenbau GmbH
see Anode rodding 1.4
„ Heat treatment of extrusion
ingot (homogenisation)
„ Vertical semi-continuous DC
casting / Vertikales Stranggießen
1.9 Potroom
Formatebehandlung (homogenisieren)
maerz-gautschi
Industrieofenanlagen GmbH
see Casting Equipment 3.1
„ Tapping vehicles
Schöpffahrzeuge
GLAMA Maschinenbau GmbH
see Anode rodding 1.4
„ Crustbreakers / Krustenbrecher
GLAMA Maschinenbau GmbH
see Anode rodding 1.4
HERTWICH ENGINEERING GmbH
see Casthouse (foundry) 1.5
„ Dry absorption units for
electrolysis exhaust gases
see Equipment and accessories 2.11
IUT Industriell Ugnsteknik AB
see Extrusion 2
„ Horizontal continuous casting
Horizontales Stranggießen
maerz-gautschi
Industrieofenanlagen GmbH
see Casting Equipment 3.1
Trockenabsorptionsanlage für
Elektrolyseofenabgase
ALSTOM Norway AS
Tel. +47 22 12 70 00
Internet: www.environment.power.alstom.com
„ Anode transport equipment
Anoden Transporteinrichtungen
GLAMA Maschinenbau GmbH
see Anode rodding 1.4
HERTWICH ENGINEERING GmbH
see Casthouse (foundry) 1.5
see Billet Heating Furnaces 1.5
maerz-gautschi
Industrieofenanlagen GmbH
see Casting Equipment 3.1
HF Messtechnik
1.8 Electrolysis cell (pot)
Elektrolyseofen
„ Scales / Waagen
„ HF Measurementtechnology
OPSIS AB
Box 244, S-24402 Furulund, Schweden
Tel. +46 (0) 46-72 25 00, Fax -72 25 01
E-Mail: [email protected]
Internet: www.opsis.se
„ Insulating bricks / Isoliersteine
Promat GmbH – Techn. Wärmedämmung
Scheifenkamp 16, D-40878 Ratingen
Tel. +49 (0) 2102 / 493-0, Fax -493 115
[email protected], www.promat.de
1.15 Storage and transport
HERTWICH ENGINEERING GmbH
see Casthouse (foundry) 1.5
„ Pot feeding systems
maerz-gautschi
Industrieofenanlagen GmbH
see Casting Equipment 3.1
Möller Materials Handling GmbH
Internet: www.moeller-mh.com
see Storage facilities for smelting 1.2
HUBTEX Maschinenbau GmbH & Co. KG
Werner-von-Siemens-Str. 8
D-36041 Fulda
Tel. +49 (0) 661 / 83 82-0
Fax +49 (0) 661 / 83 82-120
E-Mail: [email protected]
Internet: www.hubtex.com
114
Beschickungseinrichtungen
für Elektrolysezellen
Lager und Transport
ALUMINIUM · 1-2/2008
LIEFERVERZEICHNIS
2
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
Extrusion
Strangpressen
Extrusion billet preparation
Extrusion equipment
Section handling
Heat treatment
Measurement and control equipment
Die preparation and care
Second-hand extrusion plant
Consultancy, expert opinion
Surface finishing of sections
Machining of sections
Equipment and accessories
Services
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
Pressbolzenbereitstellung
Strangpresseinrichtungen
Profilhandling
Wärmebehandlung
Mess- und Regeleinrichtungen
Werkzeugbereitstellung und -pflege
Gebrauchte Strangpressanlagen
Beratung, Gutachten
Oberflächenveredlung von Profilen
Profilbearbeitung
Ausrüstungen und Hilfsmittel
Dienstleistungen
„ Billet heating furnaces
Öfen zur Bolzenerwärmung
„ Hot shears / Warmscheren
OTTO JUNKER GmbH
see Extrusion 2
www.otto-junker-group.com
2.2 Extrusion equipment
Jägerhausstr. 22
D – 52152 Simmerath
Telefon: +49 2473 601 0
Telefax: +49 2473 601 600
E-Mail: [email protected]
Kontakt: Herr Teichert / Flat Equipment
Herr Dr. Menzler / Extruded Equipment
Herr Donsbach / Foundry Equipment
Kingsbury Road
Curdworth
UK - SUTTON COLDFIELD B76 9EE
Telefon: +44 1675 470551
Telefax: +44 1675 470645
E-Mail: [email protected]
Kontakt: Mr. Beard
IUT Industriell Ugnsteknik AB
Industrivägen 2
43892 Härryda, Sweden
Telefon: +46 (0) 301 31510
Telefax: +46 (0) 301 30479
E-Mail: [email protected]
Kontakt: Mr. Berge
2.1 Extrusion billet
preparation
Pressbolzenbereitstellung
Am großen Teich 16+27
D-58640 Iserlohn
Tel. +49 (0) 2371 / 4346-0
Fax +49 (0) 2371 / 4346-43
E-Mail: [email protected]
Internet: www.ias-gmbh.de
MARX GmbH & Co. KG
www.marx-gmbh.de
see Melt operations 4.13
Sistem Teknik Ltd. Sti.
DES San. Sit. 102 SOK No: 6/8
Y.Dudullu, TR-34775 Istanbul/Turkey
Tel.: +90 216 420 86 24
Fax: +90 216 420 23 22
E-Mail: [email protected]
Internet: www.sistemteknik.com
„ Billet heating units
Anlagen zur Bolzenerwärmung
OTTO JUNKER GmbH
see Extrusion 2
Strangpresseinrichtungen
Oilgear Towler GmbH
Im Gotthelf 8
D 65795 Hattersheim
Tel. +49 (0) 6145 3770
Fax +49 (0) 6145 30770
E-Mail: [email protected]
Internet: www.oilgear.de
SMS Meer GmbH
Schloemann Extrusion
Ohlerkirchweg 66
D-41069 Mönchengladbach
Tel. +49 (0) 2161 / 3500
Fax +49 (0) 2161 / 3501667
E-Mail: [email protected]
Internet: www.sms-meer.com
„ Containers / Rezipienten
KIND & CO., EDELSTAHLWERK, KG
Bielsteiner Straße 128-130
D-51674 Wiehl
Telefon: +49 (0) 2262 / 84 0
Telefax: +49 (0) 2262 / 84 175
E-Mail: [email protected]
Internet: www.kind-co.de
SIGNODE® SYSTEM GMBH
Packaging Equipment
Non-Ferrous Specialist Team DSWE
Magnusstr. 18, 46535 Dinslaken/Germany
Telefon: +49 (0) 2064 / 69-210
Telefax: +49 (0) 2064 / 69-489
E-Mail: [email protected]
Internet: www.signode.com
Contact: Mr. Gerard Laks
ALUMINIUM · 1-2/2008
„ Billet transport and
storage equipment
Bolzen Transport- und
Lagereinrichtungen
OTTO JUNKER GmbH
see Extrusion 2
SMS Meer GmbH
see Extrusion equipment 2.2
115
LIEFERVERZEICHNIS
„ Extrusion / Strangpressen
„ Homogenising furnaces
Homogenisieröfen
„ Section cooling
Profilkühlung
OTTO JUNKER GmbH
see Extrusion 2
OTTO JUNKER GmbH
IUT Industriell Ugnsteknik AB
OTTO JUNKER GmbH
see Extrusion 2
see Extrusion 2
„ Press control systems
Pressensteuersysteme
Oilgear Towler GmbH
see Extrusion Equipment 2.2
SMS Meer GmbH
see Extrusion equipment 2.2
„ Temperature measurement
Temperaturmessung
„ Packaging equipment
Verpackungseinrichtungen
H+H HERRMANN + HIEBER GMBH
Fördersysteme für Paletten
und schwere Lasten
Rechbergstraße 46
D-73770 Denkendorf/Stuttgart
Tel. +49 (0) 711 / 9 34 67-0
Fax +49 (0) 711 / 3 46 0911
E-Mail: [email protected]
Internet: www.herrmannhieber.de
SMS Meer GmbH
see Extrusion equipment 2.2
„ Section saws
Profilsägen
OTTO JUNKER GmbH
see Extrusion 2
Vollert Anlagenbau
GmbH + Co. KG
see Transfer to the casting furnace 1.5
SMS Meer GmbH
see Extrusion equipment 2.2
„ Puller equipment
Ausziehvorrichtungen/Puller
SMS Meer GmbH
see Extrusion equipment 2.2
OTTO JUNKER GmbH
see Extrusion 2
Profil-Lagereinrichtungen
„ Heating and control
equipment for intelligent
billet containers
Heizungs- und Kontrollausrüstung
für intelligente Blockaufnehmer
„ Section store equipment
SMS Meer GmbH
see Extrusion equipment 2.2
H+H HERRMANN + HIEBER GMBH
Fördersysteme für Paletten
und schwere Lasten
Rechbergstraße 46
D-73770 Denkendorf/Stuttgart
Tel. +49 (0) 711 / 9 34 67-0
Fax +49 (0) 711 / 3 46 0911
E-Mail: [email protected]
Internet: www.herrmannhieber.de
MARX GmbH & Co. KG
www.marx-gmbh.de
see Melt operations 4.13
2.3 Section handling
Profilhandling
SIGNODE® SYSTEM GMBH
Packaging Equipment
Non-Ferrous Specialist Team DSWE
Magnusstr. 18, 46535 Dinslaken/Germany
Telefon: +49 (0) 2064 / 69-210
Telefax: +49 (0) 2064 / 69-489
E-Mail: [email protected]
Internet: www.signode.com
Contact: Mr. Gerard Laks
116
Could not find your „keywords“?
Please ask for our complete
„Supply sources for the
aluminium industry“.
E-Mail: [email protected]
ALUMINIUM · 1-2/2008
LIEFERVERZEICHNIS
„ Transport equipment for
extruded sections
KASTO Maschinenbau GmbH & Co. KG
Industriestr. 14, D-77855 Achern
Tel.: +49 (0) 7841 61-0 / Fax: +49 (0) 7841 61 300
[email protected] / www.kasto.de
Hersteller von Band- und Kreissägemaschinen
sowie Langgut- und Blechlagersystemen
Vollert Anlagenbau
GmbH + Co. KG
see Transfer to the casting furnace 1.5
OTTO JUNKER GmbH
see Extrusion 2
Homogenisieröfen
Transporteinrichtungen
für Profilabschnitte
H+H HERRMANN + HIEBER GMBH
Fördersysteme für Paletten
und schwere Lasten
Rechbergstraße 46
D-73770 Denkendorf/Stuttgart
Tel. +49 (0) 711 / 9 34 67-0
Fax +49 (0) 711 / 3 46 0911
E-Mail: [email protected]
Internet: www.herrmannhieber.de
OTTO JUNKER GmbH
see Extrusion 2
HERTWICH ENGINEERING GmbH
see Casthouse (foundry) 1.5
OTTO JUNKER GmbH
IUT Industriell Ugnsteknik AB
see Extrusion 2
schwartz GmbH
„ Section transport equipment
Profiltransporteinrichtungen
„ Homogenising furnaces
Vollert Anlagenbau
GmbH + Co. KG
see Transfer to the casting furnace 1.5
Edisonstraße 5
D-52152 Simmerath
Tel.: +49 (0) 2473 9488-0
Fax: +49 (0) 2473 9488-11
E-Mail: [email protected]
Internet: www.schartz-wba.de
2.4 Heat treatment
Wärmebehandlung
SMS Meer GmbH
see Extrusion equipment 2.2
„ Extrusion
Strangpressen
see Billet Heating Furnaces 2.1
OTTO JUNKER GmbH
see Extrusion 2
„ Stackers / Destackers
Stapler / Entstapler
OTTO JUNKER GmbH
IUT Industriell Ugnsteknik AB
see Extrusion 2
„ Heat treatment furnaces
Wärmebehandlungsöfen
Mess- und Regeleinrichtungen
INOTHERM INDUSTRIEOFENUND WÄRMETECHNIK GMBH
see Casthouse (foundry) 1.5
SMS Meer GmbH
see Extrusion equipment 2.2
2.5 Measurement and
control equipment
„ Extrusion plant control systems
Presswerkssteuerungen
OTTO JUNKER GmbH
IUT Industriell Ugnsteknik AB
see Extrusion 2
SMS Meer GmbH
see Extrusion equipment 2.2
„ Stretching equipment
Reckeinrichtungen
see Billet Heating Furnaces 2.1
OTTO JUNKER GmbH
see Extrusion 2
„ Custom designed heat
processing equipment
Kundenspezifische
Wärmebehandlungsanlagen
SMS Meer GmbH
see Extrusion equipment 2.2
ALUMINIUM · 1-2/2008
Sistem Teknik Ltd. Sti.
see Billet Heating Furnaces 2.1
„ Hardness measuring
instuments, portable
Härtemessgerät, tragbar
Form+Test Seidner & Co. GmbH
D-88491 Riedlingen
Telefax 07371/9302-98
E-Mail: [email protected]
117
LIEFERVERZEICHNIS
2.6 Die preparation and care
Werkzeugbereitstellung
und -pflege
Castool Tooling Solutions
(North America)
21 State Crown Bvld
Scarborough Ontario Canada MIV 4B1
Tel.: +1 416 297 1521
Fax: +1 416 297 1915
E-Mail: [email protected]
Internet: www.castool.com
Sales Contact: Danny Dann
2.10 Machining of sections
Profilbearbeitung
„ Processing of Profiles
Profilbearbeitung
Tensai (International) AG
Extal Division
Steinengraben 40
CH-4051 Basel
Telefon +41 (0) 61 284 98 10
Telefax +41 (0) 61 284 98 20
E-Mail: [email protected]
„ Die heating furnaces
Werkzeuganwärmöfen
IUT Industriell Ugnsteknik AB
see Extrusion 2
MARX GmbH & Co. KG
www.marx-gmbh.de
see Melt operations 4.13
schwartz GmbH
Edisonstraße 5
D-52152 Simmerath
Tel.: +49 (0) 2473 9488-0
Fax: +49 (0) 2473 9488-11
E-Mail: [email protected]
Internet: www.schartz-wba.de
Sistem Teknik Ltd. Sti.
see Billet Heating Furnaces 2.1
2.11 Equipment and
accessories
„ Ageing furnace for extrusions
Auslagerungsöfen für
Strangpressprofile
IUT Industriell Ugnsteknik AB
see Extrusion 2
LOI Thermprocess GmbH
Am Lichtbogen 29
D-45141 Essen
Germany
Telefon +49 (0) 201 / 18 91-3 10
Telefax +49 (0) 201 / 18 91-53 10
E-Mail: [email protected]
Internet: www.loi.de
Ausrüstungen und
Hilfsmittel
„ Inductiv heating equipment
Induktiv beheizte
Erwärmungseinrichtungen
see Billet Heating Furnaces 2.1
Am großen Teich 16+27
D-58640 Iserlohn
Tel. +49 (0) 2371 / 4346-0
Fax +49 (0) 2371 / 4346-43
E-Mail: [email protected]
Internet: www.ias-gmbh.de
2.12 Services
Dienstleistungen
Haarmann Holding GmbH
see Die preparation and care 2.6
„ Extrusion dies
Strangpresswerkzeuge
Haarmann Holding GmbH
Ludwigsallee 57
D-52052 Aachen
Telefon: 02 41 / 9 18 - 500
Telefax: 02 41 / 9 18 - 5010
E-Mail: [email protected]
Internet: www.haarmann-gruppe.de
„ Hardening technology
Härtetechnik
Haarmann Holding GmbH
see Die preparation and care 2.6
2.7 Second-hand
extrusion plant
Gebr. Strangpressanlagen
Qualiteam International/ExtruPreX
Champs Elyséesweg 17, NL-6213 AA Maastricht
Tel. +31-43-3 25 67 77
Internet: www.extruprex.com
118
Could not find your „keywords“?
Please ask for our complete
„Supply sources for the
aluminium industry“.
E-Mail:
[email protected]
ALUMINIUM · 1-2/2008
LIEFERVERZEICHNIS
3
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
Rolling mill technology
Walzwerktechnik
Casting equipment
Rolling bar machining
Rolling bar furnaces
Hot rolling equipment
Strip casting units and accessories
Cold rolling equipment
Thin strip / foil rolling plant
Auxiliary equipment
Adjustment devices
Process technology / Automation technology
Coolant / lubricant preparation
Air extraction systems
Fire extinguishing units
Storage and dispatch
Second-hand rolling equipment
Coil storage systems
Strip Processing Lines
3.0 Rolling mill Technology
Walzwerktechnik
SMS Demag Aktiengesellschaft
Eduard-Schloemann-Straße 4
D-40237 Düsseldorf
Telefon: +49 (0) 211 881-0
Telefax: +49 (0) 211 881-49 02
Internet: www.sms-demag.com
E-Mail: [email protected]
Geschäftsbereiche:
Warmflach- und Kaltwalzwerke
Wiesenstraße 30
D-57271 Hilchenbach-Dahlbruch
Telefon: +49 (0) 2733 29-0
Telefax: +49 (0) 2733 29-2852
Bandanlagen
Walderstraße 51/53
D-40724 Hilden
Telefon: +49 (0) 211 881-5100
Telefax: +49 (0) 211 881-5200
Elektrik + Automation
Ivo-Beucker-Straße 43
D-40237 Düsseldorf
Telefon: +49 (0) 211 881-5895
Telefax: +49 (0) 211 881-775895
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
Gießanlagen
Walzbarrenbearbeitung
Walzbarrenvorbereitung
Warmwalzanlagen
Bandgießanlagen und Zubehör
Kaltwalzanlagen
Feinband-/Folienwalzwerke
Nebeneinrichtungen
Adjustageeinrichtungen
Prozesstechnik / Automatisierungstechnik
Kühl-/Schmiermittel-Aufbereitung
Abluftsysteme
Feuerlöschanlagen
Lagerung und Versand
Gebrauchtanlagen
Coil storage systems
Bandprozesslinien
maerz-gautschi
Industrieofenanlagen GmbH
Geschäftsbereich Aluminium
Konstanzer Straße 37
Postfach 170
CH 8274 Tägerwilen
Telefon +41/71/6666666
Telefax +41/71/6666688
E-Mail: [email protected]
Kontakt: Stefan Blum, Tel. +41/71/6666621
„ Metal filters / Metallfilter
maerz-gautschi
Industrieofenanlagen GmbH
see Casting equipment 3.1
„ Filling level indicators
and controls
SMS Demag Aktiengesellschaft
see Rolling mill Technology 3.0
„ Slab milling machines
Barrenfräsmaschinen
Füllstandsanzeiger und -regler
maerz-gautschi
Industrieofenanlagen GmbH
see Casting equipment 3.1
„ Melt purification units
Schmelzereinigungsanlagen
maerz-gautschi
Industrieofenanlagen GmbH
see Casting equipment 3.1
3.2 Rolling bar machining
Walzbarrenbearbeitung
3.1 Casting equipment
„ Bar scalping / Barrenfräsen
„ Band saws / Bandsägen
SMS Meer GmbH
see Rolling bar machining 3.2
3.3 Rolling bar furnaces
Walzbarrenvorbereitung
„ Homogenising furnaces
Homogenisieröfen
Gießanlagen
OTTO JUNKER GmbH
see Extrusion 2
„ Melting and holding furnaces
Schmelz- und Warmhalteöfen
see Equipment and accessories 2.11
ALUMINIUM · 1-2/2008
SMS Meer GmbH
Ohlerkirchweg 66
D-41069 Mönchengladbach
Tel. +49 (0) 2161 / 3500
Fax +49 (0) 2161 / 3501667
E-Mail: [email protected]
Internet: www.sms-meer.com
HERTWICH ENGINEERING GmbH
see Casthouse (foundry) 1.5
OTTO JUNKER GmbH
IUT Industriell Ugnsteknik AB
see Extrusion 2
119
LIEFERVERZEICHNIS
maerz-gautschi
Industrieofenanlagen GmbH
see Casting equipment 3.1
3.4 Hot rolling equipment
„ Spools / Haspel
Warmwalzanlagen
schwartz GmbH
Edisonstraße 5
D-52152 Simmerath
Tel.: +49 (0) 2473 9488-0
Fax: +49 (0) 2473 9488-11
E-Mail: [email protected]
Internet: www.schartz-wba.de
Achenbach Buschhütten GmbH
Siegener Str. 152, D-57223 Kreuztal
Tel. +49 (0) 2732/7990, [email protected]
Internet: www.achenbach.de
„ Hot rolling units /
complete plants
„ Annealing furnaces
Glühöfen
EBNER Industrieofenbau Ges.m.b.H.
Ruflinger Str. 111, A-4060 Leonding
Tel. +43 / 732 / 68 68
Fax +43 / 732 / 68 68-1000
Internet: www.ebner.cc
E-Mail: [email protected]
OTTO JUNKER GmbH
IUT Industriell Ugnsteknik AB
see Extrusion 2
SMS Demag Aktiengesellschaft
see Rolling mill Technology 3.0
SIEMAG GmbH
Obere Industriestraße 8
D-57250 Netphen
Tel.: +49 (0) 2738 / 21-0
Fax: +49 (0) 2738 / 21-1299
E-Mail: [email protected]
Internet: www.siemag.com
„ Coil transport systems
Warmwalzanlagen/Komplettanlagen
SMS Demag Aktiengesellschaft
see Rolling mill Technology 3.0
Bundtransportsysteme
„ Toolings / Werkzeuge
maerz-gautschi
Industrieofenanlagen GmbH
see Casting equipment 3.1
Vollert Anlagenbau
GmbH + Co. KG
see Transfer to the casting furnace 1.5
schwartz GmbH
Windhoff Bahn- und
Anlagentechnik GmbH
see Anode rodding 1.4
see Extrusion equipment 2.2
see Heat treatment 2.4
„ Bar heating furnaces
Barrenanwärmanlagen
„ Drive systems / Antriebe
Cores & shells for continuous
casting lines
SMS Demag Aktiengesellschaft
see Rolling mill Technology 3.0
„ Rolling mill modernisation
OTTO JUNKER GmbH
see Extrusion 2
Bandgießanlagen und
Zubehör
„ Cores & shells for continuous
casting lines
EBNER Industrieofenbau Ges.m.b.H.
see Annealing furnaces 3.3
maerz-gautschi
Industrieofenanlagen GmbH
see Casting equipment 3.1
3.5 Strip casting units
and accessories
Walzwerksmodernisierung
Bruno Presezzi SpA
Via per Ornago 8
I-20040 Burago Molgora (Mi) – Italy
Tel. +39 039 63502 229
Fax +39 039 6081373
E-Mail: [email protected]
Internet: www.brunopresezzi.com
Contact: Franco Gramaglia
„ Roller tracks
Rollengänge
maerz-gautschi
Industrieofenanlagen GmbH
see Casting equipment 3.1
SMS Demag Aktiengesellschaft
see Rolling mill Technology 3.0
Do you need more information?
E-Mail: [email protected]
120
„ Revamps, equipments & spare parts
for continuous casting lines
Revamps, equipments & spare parts
for continuous casting lines
Bruno Presezzi SpA
Via per Ornago 8
I-20040 Burago Molgora (Mi) – Italy
Tel. +39 039 63502 229
Fax +39 039 6081373
E-Mail: [email protected]
Internet: www.brunopresezzi.com
Contact: Franco Gramaglia
ALUMINIUM · 1-2/2008
LIEFERVERZEICHNIS
„ Twin-roll continuous casting
lines (complete lines)
Twin-roll continuous casting lines
(complete lines)
Bruno Presezzi SpA
Via per Ornago 8
I-20040 Burago Molgora (Mi) – Italy
Tel. +39 039 63502 229
Fax +39 039 6081373
E-Mail: [email protected]
Internet: www.brunopresezzi.com
Contact: Franco Gramaglia
„ Coil annealing furnaces
Bundglühöfen
OTTO JUNKER GmbH
see Extrusion 2
see Equipment and accessories 2.11
3.6 Cold rolling equipment
Achenbach Buschhütten GmbH
Siegener Str. 152, D-57223 Kreuztal
Tel. +49 (0) 2732/7990, [email protected]
Internet: www.achenbach.de
schwartz GmbH
Edisonstraße 5
D-52152 Simmerath
Tel.: +49 (0) 2473 9488-0
Fax: +49 (0) 2473 9488-11
E-Mail: [email protected]
Internet: www.schartz-wba.de
schwartz GmbH
Edisonstraße 5
D-52152 Simmerath
Tel.: +49 (0) 2473 9488-0
Fax: +49 (0) 2473 9488-11
E-Mail: [email protected]
Internet: www.schartz-wba.de
Vits Systems GmbH
Winkelsweg 172
D-40764 Langenfeld
Tel.: +49 (0) 2173 / 798-0
Fax: +49 (0) 2173 / 798-244
E-Mail: [email protected], Internet: www.vits.com
www.vits.com
Mainzer Landstrasse 16
D-60325 Frankfurt am Main
Tel.: +49 69 97 16 81 48
Fax: +49 69 97 16 82 00
E-Mail: [email protected]
Internet: www.pesmel.com
maerz-gautschi
Industrieofenanlagen GmbH
see Casting equipment 3.1
OTTO JUNKER GmbH
IUT Industriell Ugnsteknik AB
see Extrusion 2
maerz-gautschi
Industrieofenanlagen GmbH
see Casting equipment 3.1
Kaltwalzanlagen
„ Heating furnaces / Anwärmöfen
see Cold rolling equipment 3.6
„ Coil transport systems
Bundtransportsysteme
„ Process optimisation systems
Prozessoptimierungssysteme
maerz-gautschi
Industrieofenanlagen GmbH
see Casting equipment 3.1
SIEMAG GmbH
Obere Industriestraße 8
D-57250 Netphen
Tel.: +49 (0) 2738 / 21-0
Fax: +49 (0) 2738 / 21-1299
E-Mail: [email protected]
Internet: www.siemag.com
SIGNODE® SYSTEM GMBH
Packaging Equipment
Non-Ferrous Specialist Team DSWE
Magnusstr. 18, 46535 Dinslaken/Germany
Telefon: +49 (0) 2064 / 69-210
Telefax: +49 (0) 2064 / 69-489
E-Mail: [email protected]
Internet: www.signode.com
Contact: Mr. Gerard Laks
Vollert Anlagenbau
GmbH + Co. KG
see Transfer to the casting furnace 1.5
Windhoff Bahn- und
Anlagentechnik GmbH
see Anode rodding 1.4
„ Process simulation
Prozesssimulation
maerz-gautschi
Industrieofenanlagen GmbH
see Casting equipment 3.1
„ Cold rolling units / complete plants
Kaltwalzanlagen/Komplettanlagen
SMS Demag Aktiengesellschaft
see Rolling mill Technology 3.0
SMS Demag Aktiengesellschaft
see Rolling mill Technology 3.0
Do you need
more
information?
E-Mail:
[email protected]
ALUMINIUM · 1-2/2008
„ Drive systems / Antriebe
„ Revamps, equipments & spare parts
Revamps, equipments & spare parts
SMS Demag Aktiengesellschaft
see Rolling mill Technology 3.0
Bruno Presezzi SpA
Via per Ornago 8
I-20040 Burago Molgora (Mi) – Italy
Tel. +39 039 63502 229
Fax +39 039 6081373
E-Mail: [email protected]
Internet: www.brunopresezzi.com
Contact: Franco Gramaglia
121
LIEFERVERZEICHNIS
„ Roll exchange equipment
Walzenwechseleinrichtungen
3.7 Thin strip /
foil rolling plant
Feinband-/Folienwalzwerke
SMS Demag Aktiengesellschaft
see Rolling mill Technology 3.0
Achenbach Buschhütten GmbH
Siegener Str. 152, D-57223 Kreuztal
Tel. +49 (0) 2732/7990, [email protected]
Internet: www.achenbach.de
SIGNODE® SYSTEM GMBH
Vollert Anlagenbau
GmbH + Co. KG
see Transfer to the casting furnace 1.5
Windhoff Bahn- und
Anlagentechnik GmbH
see Anode rodding 1.4
Packaging Equipment
Non-Ferrous Specialist Team DSWE
Magnusstr. 18, 46535 Dinslaken/Germany
Telefon: +49 (0) 2064 / 69-210
Telefax: +49 (0) 2064 / 69-489
E-Mail: [email protected]
Internet: www.signode.com
Contact: Mr. Gerard Laks
schwartz GmbH
Edisonstraße 5
D-52152 Simmerath
Tel.: +49 (0) 2473 9488-0
Fax: +49 (0) 2473 9488-11
E-Mail: [email protected]
Internet: www.schartz-wba.de
Vits Systems GmbH
Winkelsweg 172
D-40764 Langenfeld
Tel.: +49 (0) 2173 / 798-0
Fax: +49 (0) 2173 / 798-244
E-Mail: [email protected], Internet: www.vits.com
„ Thin strip / foil rolling mills /
complete plant
Feinband- / Folienwalzwerke /
Komplettanlagen
„ Coil annealing furnaces
Bundglühöfen
„ Rolling mill modernization
OTTO JUNKER GmbH
see Extrusion 2
Walzwerkmodernisierung
Achenbach Buschhütten GmbH
Siegener Str. 152, D-57223 Kreuztal
Tel. +49 (0) 2732/7990, [email protected]
Internet: www.achenbach.de
SMS Demag Aktiengesellschaft
see Rolling mill Technology 3.0
see Equipment and accessories 2.11
maerz-gautschi
Industrieofenanlagen GmbH
see Casting equipment 3.1
„ Strip shears
Bandscheren
schwartz GmbH
see Cold colling equipment 3.6
„ Revamps, equipments & spare parts
Revamps, equipments & spare parts
Bruno Presezzi SpA
Via per Ornago 8
I-20040 Burago Molgora (Mi) – Italy
Tel. +39 039 63502 229
Fax +39 039 6081373
E-Mail: [email protected]
Internet: www.brunopresezzi.com
Contact: Franco Gramaglia
„ Rolling mill modernization
Walzwerkmodernisierung
www.vits.com
see Thin strip / foil rolling plant 3.7
SMS Demag Aktiengesellschaft
see Rolling mill Technology 3.0
Achenbach Buschhütten GmbH
Siegener Str. 152, D-57223 Kreuztal
Tel. +49 (0) 2732/7990, [email protected]
Internet: www.achenbach.de
„ Heating furnaces
Anwärmöfen
„ Trimming equipment
Besäumeinrichtungen
INOTHERM INDUSTRIEOFENUND WÄRMETECHNIK GMBH
see Casthouse (foundry) 1.5
Do you need
more information?
OTTO JUNKER GmbH
see Extrusion 2
SMS Demag Aktiengesellschaft
see Rolling mill Technology 3.0
122
maerz-gautschi
Industrieofenanlagen GmbH
see Casting equipment 3.1
E-Mail:
[email protected]
ALUMINIUM · 1-2/2008
LIEFERVERZEICHNIS
3.9 Adjustment devices
Adjustageeinrichtungen
„ Process control technology
Prozessleittechnik
„ Strip flatness measurement
and control equipment
Bandplanheitsmess- und
-regeleinrichtungen
„ Sheet and plate stretchers
Blech- und Plattenstrecker
SMS Demag Aktiengesellschaft
see Rolling mill Technology 3.0
SMS Meer GmbH
see Rolling bar machining 3.2
„ Cable sheathing presses
Kabelummantelungspressen
Unitechnik Cieplik & Poppek AG
D-51674 Wiehl, www.unitechnik.com
„ Standards and Specifications
Normen und Spezifikationen
SMS Meer GmbH
see Rolling bar machining 3.2
„ Cable undulating machines
Kabelwellmaschinen
ABB Automation Technologies AB
Force Measurement
S-72159 Västeras, Sweden
Phone: +46 21 342000
Fax: +46 21 340005
E-Mail: [email protected]
Internet: www.abb.com/pressductor
ExcSol GmbH
Im Burggarten 23, D-53507 Dernau
Tel.: +49 (0) 2643/90 02 56, [email protected]
Walzwerke / Beratung / Programmierung
*Normen / Spez. in Datenbanken
*Produktkatalog / Prüfungen / Zeugnisse
*Prozess-/Qualitätsmanagement
„ Strip thickness measurement
and control equipment
Achenbach Buschhütten GmbH
Siegener Str. 152, D-57223 Kreuztal
Tel. +49 (0) 2732/7990, [email protected]
Internet: www.achenbach.de
SMS Demag Aktiengesellschaft
see Rolling mill Technology 3.0
Banddickenmess- und
-regeleinrichtungen
3.11 Coolant / lubricant
preparation
SMS Meer GmbH
see Rolling bar machining 3.2
ABB Automation Technologies AB
Force Measurement
S-72159 Västeras, Sweden
Phone: +46 21 342000
Fax: +46 21 340005
E-Mail: [email protected]
Internet: www.abb.com/pressductor
Kühl-/SchmiermittelAufbereitung
„ Rolling oil recovery and
treatment units
Walzöl-Wiederaufbereitungsanlagen
3.10 Process technology /
Automation technology
Prozesstechnik /
Automatisierungstechnik
4Production AG
Produktionsoptimierende Lösungen
Adenauerstraße 20, D-52146 Würselen
Tel.: +49 (0) 2405 / 4135-0
[email protected], www.4production.de
Achenbach Buschhütten GmbH
Siegener Str. 152, D-57223 Kreuztal
Tel. +49 (0) 2732/7990, [email protected]
Internet: www.achenbach.de
SMS Demag Aktiengesellschaft
see Rolling mill Technology 3.0
„ Filter for rolling oils and
emulsions
Filter für Walzöle und Emulsionen
SIEMAG GmbH
Obere Industriestraße 8
D-57250 Netphen
Tel.: +49 (0) 2738 / 21-0
Fax: +49 (0) 2738 / 21-1299
E-Mail: [email protected]
Internet: www.siemag.com
ALUMINIUM · 1-2/2008
SMS Demag Aktiengesellschaft
see Rolling mill Technology 3.0
Achenbach Buschhütten GmbH
Siegener Str. 152, D-57223 Kreuztal
Tel. +49 (0) 2732/7990, [email protected]
Internet: www.achenbach.de
123
LIEFERVERZEICHNIS
„ Rolling oil rectification units
„ Filtering plants and systems
Walzölrektifikationsanlagen
Filteranlagen und Systeme
3.17 Strip Processing Lines
Bandprozesslinien
„ Strip Processing Lines
Bandprozesslinen
Achenbach Buschhütten GmbH
Siegener Str. 152, D-57223 Kreuztal
Tel. +49 (0) 2732/7990, [email protected]
Internet: www.achenbach.de
Dantherm Filtration GmbH
Industriestr. 9, D-77948 Friesenheim
Tel.: +49 (0) 7821 / 966-0, Fax: - 966-245
E-Mail: [email protected]
Internet: www.danthermfiltration.com
3.14 Storage and dispatch
Lagerung und Versand
SMS Demag Aktiengesellschaft
see Rolling mill Technology 3.0
3.12 Air extraction systems
Abluft-Systeme
„ Exhaust air purification
systems (active)
Mainzer Landstrasse 16
D-60325 Frankfurt am Main
Tel.: +49 69 97 16 81 48
Fax: +49 69 97 16 82 00
E-Mail: [email protected]
Internet: www.pesmel.com
SIEMAG GmbH
Obere Industriestraße 8
D-57250 Netphen
Tel.: +49 (0) 2738 / 21-0
Fax: +49 (0) 2738 / 21-1299
E-Mail: [email protected]
Internet: www.siemag.com
Abluft-Reinigungssysteme (aktiv)
BWG Bergwerk- und WalzwerkMaschinenbau GmbH
Mercatorstraße 74 – 78
D-47051 Duisburg
Tel.: +49 (0) 203-9929-0
Fax: +49 (0) 203-9929-400
E-Mail: [email protected]
Internet: www.bwg-online.com
„ Colour Coating Lines
Bandlackierlinien
www.bwg-online.com
see Strip Processing Lines 3.17
„ Strip Annealing Lines
Bandglühlinien
www.bwg-online.com
see Strip Processing Lines 3.17
3.16 Coil storage systems
Bundlagersysteme
Achenbach Buschhütten GmbH
Siegener Str. 152, D-57223 Kreuztal
Tel. +49 (0) 2732/7990, [email protected]
Internet: www.achenbach.de
„ Stretch Levelling Lines
Streckrichtanlagen
SIEMAG GmbH
Obere Industriestraße 8
D-57250 Netphen
Tel.: +49 (0) 2738 / 21-0
Fax: +49 (0) 2738 / 21-1299
E-Mail: [email protected]
Internet: www.siemag.com
www.bwg-online.com
see Strip Processing Lines 3.17
„ Lithographic Sheet Lines
Lithografielinien
SMS Demag Aktiengesellschaft
see Rolling mill Technology 3.0
Vollert Anlagenbau
GmbH + Co. KG
see Transfer to the casting furnace 1.5
www.bwg-online.com
see Strip Processing Lines 3.17
Could not find your „keywords“?
Please ask for our complete
„Supply sources for the
aluminium industry“.
E-Mail: [email protected]
124
ALUMINIUM · 1-2/2008
LIEFERVERZEICHNIS
4
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
Foundry
Gießerei
Work protection and ergonomics
Heat-resistant technology
Conveyor and storage technology
Mould and core production
Mould accessories and accessory materials
Foundry equipment
Casting machines and equipment
Handling technology
Construction and design
Measurement technology and materials testing
Metallic charge materials
Finshing of raw castings
Melt operations
Melt preparation
Melt treatment devices
Control and regulation technology
Environment protection and disposal
Dross recovery
Gussteile
4.2 Heat-resistent technology
Feuerfesttechnik
„ Refractories
Feuerfeststoffe
Promat GmbH – Techn. Wärmedämmung
Scheifenkamp 16, D-40878 Ratingen
Tel. +49 (0) 2102 / 493-0, Fax -493 115
[email protected], www.promat.de
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
Arbeitsschutz und Ergonomie
Feuerfesttechnik
Förder- und Lagertechnik
Form- und Kernherstellung
Formzubehör, Hilfsmittel
Gießereianlagen
Gießmaschinen und Gießeinrichtungen
Handhabungstechnik
Konstruktion und Design
Messtechnik und Materialprüfung
Metallische Einsatzstoffe
Rohgussnachbehandlung
Schmelzbetrieb
Schmelzvorbereitung
Schmelzebehandlungseinrichtungen
Steuerungs- und Regelungstechnik
Umweltschutz und Entsorgung
Schlackenrückgewinnung
Cast parts
4.6 Foundry equipment
Gießereianlagen
„ Casting machines
Gießmaschinen
see Equipment and accessories 2.11
see Billet Heating Furnaces 2.1
4.7 Casting machines
and equipment
Gießereimaschinen
und Gießeinrichtungen
OTTO JUNKER GmbH
4.3 Conveyor and storage
technology
Förder- und Lagertechnik
see Extrusion 2
HERTWICH ENGINEERING GmbH
see Casthouse (foundry) 1.5
Molten Metall Level Control
Vollert Anlagenbau
GmbH + Co. KG
see Transfer to the casting furnace 1.5
„ Solution annealing furnaces/plant
Lösungsglühöfen/anlagen
4.5 Mold accessories and
accessory materials
Formzubehör, Hilfmittel
ERNST REINHARDT GMBH
Postfach 1880, D-78008 VS-Villingen
Tel. 07721/8441-0, Fax 8441-44
E-Mail: [email protected]
Internet: www.Ernst-Reinhardt.com
„ Fluxes
Flussmittel
Solvay Fluor GmbH
Hans-Böckler-Allee 20
D-30173 Hannover
Telefon +49 (0) 511 / 857-0
Telefax +49 (0) 511 / 857-2146
Internet: www.solvay-fluor.de
ALUMINIUM · 1-2/2008
„ Heat treatment furnaces
Wärmebehandlungsöfen
see Foundry equipment 4.6
Ostra Hamnen 7
SE-430 91 Hono / Schweden
Tel.: +46 31 764 5520
Fax: +46 31 764 5529
E-mail: [email protected]
Internet: www.precimeter.se
Sales Contact: Rolf Backberg
„ Mould parting agents
Kokillentrennmittel
Schröder KG
Schmierstofftechnik
Postfach 1170
D-57251
Freudenberg
Tel. 02734/7071
Fax 02734/20784
www.schroeder-schmierstoffe.de
125
LIEFERVERZEICHNIS
„ Melting furnaces
4.8 Handling technology
Schmelzöfen
Handhabungstechnik
Vollert Anlagenbau
GmbH + Co. KG
see Transfer to the casting furnace 1.5
4.9 Construction and
Design
Konstruktion und Design
THERMCON OVENS BV
see Extrusion 2
4.11 Metallic charge
materials
ALERIS Recycling (German Works) GmbH
Aluminiumstraße 3
D-41515 Grevenbroich
Telefon +49 (0) 2181/16 45 0
Telefax +49 (0) 2181/16 45 100
E-Mail: [email protected]
Internet: www.aleris-recycling.com
Büttgenbachstraße 14
D-40549 Düsseldorf/Germany
Tel.: +49 (0) 211 / 5 00 91-43
Fax: +49 (0) 211 / 50 13 97
E-Mail: [email protected]
Internet: www.bloomeng.com
Sales Contact: Klaus Rixen
„ Pre alloys / Vorlegierungen
METALLHANDELSGESELLSCHAFT
SCHOOF & HASLACHER MBH & CO. KG
Postfach 600714, D 81207 München
Telefon 089/829133-0
Telefax 089/8201154
E-Mail: [email protected]
Internet: www.metallhandelsgesellschaft.de
„ Recycling / Recycling
HERTWICH ENGINEERING GmbH
see Casthouse (foundry) 1.5
see Equipment and accessories 2.11
Metallische Einsatzstoffe
Scholz AG
Am Bahnhof
D-73457 Essingen
Tel. +49 (0) 7365-84-0
Fax +49 (0) 7365-1481
E-Mail: [email protected]
Internet: www.scholz-ag.de
„ Aluminium alloys
Aluminiumlegierungen
TRIMET ALUMINIUM AG
Niederlassung Gelsenkirchen
Am Stadthafen 51-65
D-45681 Gelsenkirchen
Tel.: +49 (0) 209 / 94089-0
Fax: +49 (0) 209 / 94089-60
Internet: www.trimet.de
maerz-gautschi
Industrieofenanlagen GmbH
see Casting Equipment 3.1
TRIMET ALUMINIUM AG
Niederlassung Harzgerode
Aluminiumallee 1
06493 Harzgerode
Tel.: 039484 / 50-0
Fax: 039484 / 50-100
Internet: www.trimet.de
„ Holding furnaces
Warmhalteöfen
4.13 Melt operations
Schmelzbetrieb
METALLHÜTTENWERKE BRUCH GMBH
Postfach 10 06 29
D-44006 Dortmund
Telefon +49 (0) 231 / 8 59 81-121
Telefax +49 (0) 231 / 8 59 81-124
E-Mail: [email protected]
Internet: www.bruch.de
MARX GmbH & Co. KG
Lilienthalstr. 6-18
D-58638 Iserhohn
Tel.: +49 (0) 2371 / 2105-0, Fax: -11
E-Mail: [email protected]
Internet: www.marx-gmbh.de
OTTO JUNKER GmbH
see Extrusion 2
Büttgenbachstraße 14
D-40549 Düsseldorf/Germany
Tel.: +49 (0) 211 / 5 00 91-43
Fax: +49 (0) 211 / 50 13 97
E-Mail: [email protected]
Internet: www.bloomeng.com
Sales Contact: Klaus Rixen
„ Heat treatment furnaces
Wärmebehandlungsanlagen
METALLHANDELSGESELLSCHAFT
SCHOOF & HASLACHER MBH & CO. KG
Postfach 600714, D 81207 München
Telefon 089/829133-0
Telefax 089/8201154
E-Mail: [email protected]
Internet: www.metallhandelsgesellschaft.de
126
see Equipment and accessories 2.11
see Billet Heating Furnaces 2.1
maerz-gautschi
Industrieofenanlagen GmbH
see Casting Equipment 3.1
ALUMINIUM · 1-2/2008
LIEFERVERZEICHNIS
„ Heat treatment furnaces
Wärmebehandlungsanlagen
4.16 Control and
regulation technology
„ Flue gas cleaning
Rauchgasreinigung
Steuerungs- und
Regelungstechnik
„ HCL measurements
HCL Messungen
HERTWICH ENGINEERING GmbH
see Casthouse (foundry) 1.5
OPSIS AB
Box 244, S-24402 Furulund, Schweden
Tel. +46 (0) 46-72 25 00, Fax -72 25 01
E-Mail: [email protected]
Internet: www.opsis.se
Dantherm Filtration GmbH
Industriestr. 9, D-77948 Friesenheim
Tel.: +49 (0) 7821 / 966-0, Fax: - 966-245
E-Mail: [email protected]
Internet: www.danthermfiltration.com
4.18 Dross recovery
Schlackenrückgewinnung
see Equipment and accessories 2.11
OTTO JUNKER UK
see Extrusion 2
maerz-gautschi
Industrieofenanlagen GmbH
see Casting Equipment 3.1
4.17 Environment protection
and disposal
4.19 Cast parts / Gussteile
Umweltschutz und
Entsorgung
4.14 Melt preparation
Schmelzvorbereitung
„ Dust removal / Entstaubung
OTTO JUNKER GmbH
see Extrusion 2
„ Degassing, filtration
Entgasung, Filtration
NEOTECHNIK GmbH
Entstaubungsanlagen
Postfach 110261, D-33662 Bielefeld
Tel. 05205/7503-0, Fax 05205/7503-77
[email protected], www.neotechnik.com
TRIMET ALUMINIUM AG
Niederlassung Harzgerode
Aluminiumallee 1
06493 Harzgerode
Tel.: 039484 / 50-0
Fax: 039484 / 50-100
Internet: www.trimet.de
maerz-gautschi
Industrieofenanlagen GmbH
see Casting Equipment 3.1
Drache Umwelttechnik
GmbH
Werner-v.-Siemens-Straße 9/24-26
D 65582 Diez/Lahn
Telefon 06432/607-0
Telefax 06432/607-52
Internet: http://www.drache-gmbh.de
Do you need more information?
E-Mail: [email protected]
„ Melt treatment agents
Schmelzebehandlungsmittel
maerz-gautschi
Industrieofenanlagen GmbH
see Casting Equipment 3.1
4.15 Melt treatment devices
Schmelzbehandlungseinrichtungen
OTTO JUNKER GmbH
see Extrusion 2
Metaullics Systems Europe B.V.
P.O.Box 748
NL-2920 CA Krimpen a/d Yssel
Tel. +31-180/590890
Fax +31-180/551040
E-Mail: [email protected]
Internet: www.metaullics.com
ALUMINIUM · 1-2/2008
5
Materials and Recycling
Werkstoffe und Recycling
Alu-web.de
der ALUMINIUMBranchentreff.
Haben Sie schon Ihren
Basiseintrag bestellt?
Nein, dann sofort anrufen:
0511/73 04-142
Stefan Schwichtenberg
„ Granulated aluminium
Aluminiumgranulate
ECKA Granulate Austria GmbH
Bürmooser Landesstraße 19
A-5113 St. Georgen/Salzburg
Telefon +43 6272 2919-12
Telefax +43 6272 8439
Kontakt: Ditmar Klein
E-Mail: [email protected]
127
LIEFERVERZEICHNIS
6
Machining and Application
Bearbeitung und Anwendung
„ Machining of aluminium
„ Joining / Fügen
Aluminiumbearbeitung
KGaA
Haarmann Holding GmbH Henkel
siehe Prozesse für die Oberflächentechnik 6.1
see Die preparation and care 2.6
6.1 Surface treatment
processes
Prozesse für die
Oberflächenbehandlung
„ Pretreatment before coating
Vorbehandlung vor der Beschichtung
siehe Prozesse für die Oberflächentechnik 6.1
Thermische Beschichtung
„ Adhesive bonding / Verkleben
Ausrüstung für Schmiedeund Fließpresstechnik
„ Hydraulic Presses
Hydraulische Pressen
LASCO Umformtechnik GmbH
Hahnweg 139, D-96450 Coburg
Tel. +49 (0) 9561 642-0
Fax +49 (0) 9561 642-333
E-Mail: [email protected]
Internet: www.lasco.com
Henkel KGaA
„ Thermal coating
Henkel KGaA
D-40191 Düsseldorf
Tel. +49 (0) 211 / 797-30 00
Fax +49 (0) 211 / 798-36 36
Internet: www.henkel-technologies.com
6.3 Equipment for forging
and impact extrusion
Berolina Metallspritztechnik
Wesnigk GmbH
Pappelhain 30
D-15378 Hennickendorf
Tel.: +49 (0) 33434 / 46060
Fax: +49 (0) 33434 / 46701
E-Mail: [email protected]
Internet: www.metallspritztechnik.de
Henkel KGaA
siehe Prozesse für die Oberflächentechnik 6.1
8
Literature
Literatur
„ Technikcal literature
Fachliteratur
Taschenbuch des Metallhandels
Fundamentals of Extrusion Technology
Giesel Verlag GmbH
Verlag für Fachmedien
Ein Unternehmen der Klett-Gruppe
Rehkamp 3 · 30916 Isernhagen
Tel. 0511 / 73 04-122 · Fax 0511 / 73 04-157
Internet: www.alu-bookshop.de.
6.2 Semi products
„ Anodising / Anodisation
Henkel KGaA
siehe Prozesse für die Oberflächentechnik 6.1
„ Cleaning / Reinigung
Henkel KGaA
siehe Prozesse für die Oberflächentechnik 6.1
Halbzeuge
„ Wires / Drähte
Fachzeitschriften
DRAHTWERK ELISENTAL
W. Erdmann GmbH & Co.
Werdohler Str. 40, D-58809 Neuenrade
Postfach 12 60, D-58804 Neuenrade
Tel. +49(0)2392/697-0, Fax 49(0)2392/62044
E-Mail: [email protected]
Internet: www.elisental.de
Could not find your „keywords“?
Please ask for our complete
„Supply sources for the
aluminium industry“.
E-Mail:
[email protected]
128
„ Technical journals
Giesel Verlag GmbH
Ein Unternehmen der Klett-Gruppe
Rehkamp 3 · 30916 Isernhagen
Tel. 0511 / 73 04-122 · Fax 0511 / 73 04-157
ALUMINIUM · 1-2/2008
IMPRESSUM / IMPRINT
International
ALUMINIUM
Journal
84. Jahrgang 1.1.2008
Redaktion / Editorial office
Dipl.-Vw. Volker Karow
Chefredakteur, Editor in Chief
Franz-Meyers-Str. 16, 53340 Meckenheim
Tel: +49(0)2225 8359 643
Fax: +49(0)2225 18458
E-Mail: [email protected]
Dipl.-Ing. Rudolf P. Pawlek
Fax: +41 274 555 926
Hüttenindustrie und Recycling
Dipl.-Ing. Bernhard Rieth
Walzwerkstechnik und Bandverarbeitung
Verlag / Publishing house
Giesel Verlag GmbH, Verlag für Fachmedien, Unternehmen der Klett-Gruppe, Postfach 120158, 30907 Isernhagen; Rehkamp
3, 30916 Isernhagen, Tel: 0511/7304-0, Fax:
0511/7304-157. E-mail: [email protected]
Internet: www.alu-web.de.
Postbank/postal cheque account Hannover, BLZ/routing code: 25010030; Kto.Nr./ account no. 90898-306, Bankkonto/
bank account Commerzbank AG, BLZ/
routing code: 25040066, Kto.-Nr./account
no. 1500222
Geschäftsleitung / General Manager
Dietrich Taubert,
Tel: 05 11/73 04-147
E-Mail: [email protected]
Objektleitung / General Manager
Material Publications
Stefan Schwichtenberg
Tel: 05 11/ 73 04-142
E-Mail: [email protected]
Anzeigendisposition / Advertising
layout
Beate Schaefer
Tel: 05 11/ 73 04-148
E-Mail: [email protected]
Vertriebsleitung / General Manager
Distribution Department
Jutta Illhardt
Tel: 05 11/ 73 04-126
E-Mail: [email protected]
Abonnenten-Service / Reader service
Kirsten Voß
Tel: 05 11/ 73 04-122
E-Mail: [email protected]
Herstellung & Druck / Printing house
BWH GmbH, Beckstr. 10
D-30457 Hannover
Jahresbezugspreis
EUR 285,- (Inland inkl. 7% Mehrwertsteuer und Versandkosten). Europa EUR
289,- inkl. Versandkosten. Übersee US$
375,- inkl. Normalpost; Luftpost zuzügl.
US$ 82,-.
Preise für Studenten auf Anfrage. ALUMINIUM erscheint zehnmal pro Jahr. Kündigungen jeweils sechs Wochen zum Ende
der Bezugszeit.
Subscription rates
EUR 285.00 p.a. (domestic incl. V.A.T.) plus
postage. Europe EUR 289.00 incl. surface
mail. Outside Europe US$ 375.00 incl. surface mail, air mail plus US$ 82.00.
ALUMINIUM is published monthly (10
ALUMINIUM ·1-2/2008
issues a year). Cancellations six weeks
prior to the end of a year.
Anzeigenpreise / Advertisement rates
Preisliste Nr. 48 vom 1.1.2008.
Price list No. 48 from 1.1.2008.
Die Zeitschrift und alle in ihr enthaltenen
Beiträge und Abbildungen sind urheberrechtlich geschützt. Jede Verwertung außerhalb der engen Grenzen des Urheberrechtsgesetzes ist ohne Zustimmung des
Verlages unzulässig und strafbar. Das gilt
insbesondere für Vervielfältigungen, Übersetzungen, Mikroverfilmungen und die Einspeicherung und Bearbeitung in elektronischen Systemen. Der Verlag übernimmt
keine Gewähr für die Richtigkeit der in
diesem Heft mitgeteilten Informationen
und haftet nicht für abgeleitete Folgen.
Haftung bei Leistungsminderung durch
höhere Gewalt oder andere vom Verlag
nicht verschuldete Umstände (z. B. Streik)
ist ausgeschlossen.
This journal and all contributions contained therein are protected by copyright.
Any utilization outside the strict limits of
copyright legislation without the express
consent of the publisher ist prohibited
and actionable at law. This applies in
particular to reproduction, translations,
microfilming and storage or processing in
electronic systems. The publisher offers
no guarantee that the information in this
volume is accurate and accepts no liability
for consequences deriving therefrom. No
liability whatsoever is accepted for perfomance lag caused by force majeure or by
circumstances beyond the publisher’s control (e.g. industrial action).
ISSN: 0002-6689
© Giesel Verlag GmbH
Verlagsrepräsentanz / Representatives
Nielsen-Gebiet 1 (Schleswig-Holstein,
Hamburg, Bremen, Niedersachsen ohne
Osnabrück):
Giesel Verlag GmbH
Tel: 05 11/73 04-142,
Fax: 05 11/73 04-157
E-Mail: [email protected]
www.giesel-verlag.de
Nielsen-Gebiet 2 (Nordrhein-Westfalen,
Raum Osnabrück):
Medienbüro Jürgen Wickenhöfer
Minkelsches Feld 39, 46499 Hamminkeln
Tel: 0 28 52 / 9 4180
Fax: 0 28 52 / 9 4181
E-Mail: [email protected]
www.jwmedien.de
Nielsen-Gebiet 3a (Hessen, Saarland,
Rheinland-Pfalz):
multilexa GmbH, publisher services
Unterm Hungerrain 23, 63853 Mömlingen
Tel: 0 60 22/35 14
Fax: 0 60 22/3 80 80
E-Mail: [email protected]
www.multilexa.de
Nielsen-Gebiet 3 b (Baden-Württemberg):
G. Fahr, Verlags- und Pressebüro e. K.
Marktplatz 10, 72654 Neckartenzlingen
Tel: 0 71 27/30 84
Fax: 07127/2 14 78
E-Mail: [email protected]
Nielsen-Gebiet 4 (Bayern):
G. Fahr, Verlags- und Pressebüro
Marktplatz 10, 72654 Neckartenzlingen
Tel: 0 71 72/30 84
Fax: 07172/2 14 78
E-Mail: [email protected]
Nielsen-Gebiet 5, 6 + 7 (Berlin, Mecklenburg-Vorpommern, Brandenburg,
Sachsen-Anhalt Sachsen, Thüringen):
multilexa GmbH, publisher services
Unterm Hungerrain 23, 63853 Mömlingen
Tel: 0 60 22/35 14
Fax: 0 60 22/3 80 80
E-Mail: [email protected]
www.multilexa.de
Netherlands, Belgium, Luxembourg
BSW International Marketing
Bent S. Wissing
Oestbanegade 11
DK-2100 Kopenhagen
Tel: +45(0)35 385255
E-Mail: [email protected]
Switzerland
JORDI PUBLIPRESS
Postfach 154 · CH-3427 Utzenstorf
Tel. +41 (0)32 666 30 90,
Fax +41 (0)32 666 30 99
E-Mail: [email protected]
www.jordipublipress.ch
Austria
Verlagsbüro Forstner
Buchbergstraße 15/1, A-1140 Wien
Tel: +43(0)1 9 79 71 89
Fax: +43(0)1 9 79 1329
E-Mail: [email protected]
Italy
MEDIAPOINT & COMMUNICATIONS
SRL
Corte Lambruschini – Corso Buenos
Aires, 8
Vo piano – Interno 7, I-16129 Genova
Tel: +39(0)10 5 70 49 48,
Fax: +39(0)10 5 53 00 88
E-Mail: [email protected]
www.mediapointsrl.it
USA, Canada, Africa, U.A.E. etc.
John Travis
PO Box 42194
UK – London SW8 4YR
Großbritannien
Tel: +44 (0)7799001442
Fax:+44 (0)1344291072
E-Mail: [email protected]
United Kingdom
John Travis
PO Box 42194
UK – London SW8 4YR
Großbritannien
Tel: +44 (0)7799001442
Fax:+44 (0)1344291072
E-Mail: [email protected]
Scandinavia and Denmark
BSW International Marketing
Bent S. Wissing
Oestbanegade 11
DK-2100 Kopenhagen
Tel: +45(0)35 385255
Fax: +45 (0)35 385220
E-Mail: [email protected]
France
DEF & Communication
Axelle Chrismann
48 boulevard Jean Jaurès
F-92110 Clichy
Tel: +33 (0)1 47 30 71 80,
Fax: +33 (0)1 47 30 01 89
E-Mail: [email protected]
Der ALUMINIUM-Branchentreff des
Giesel Verlags: www.alu-web.de
129
VORSCHAU / PREVIEW
IM NÄCHSTEN HEFT
IN THE NEXT ISSUE
Special: Aluminium-Recycling und Schmelztechnologien
Special: Aluminium recycling and melting
technologies
Branchen- und Marktentwicklung, internationale
Herausforderungen, Technologietrends.
Beiträge unter anderem über:
• Höhere Produktivität von Schmelzöfen durch
schienengebundene Chargiermaschinen
• Kipptrommelofen ersetzt herkömmlichen
Flammofen zum Schmelzen
• Globale Perspektiven des Aluminiumrecyclings
Industry and market development, global
challenges, trends in technology.
Subjects covered include:
• Increased melt furnace productivity by rail-bound
charging machines
• Tilt rotary replacing traditional reverberatory
melting
• Global perspectives of aluminium recycling
Markt und Technik
Markets and technology
• Die „Renaissance“ des Niederdruckgießens –
CST-Gruppe mit ganzheitlichem GießtechnologieKonzept
• ‘Renaissance’ of low pressure casting –
CST group’s integrated casting solutions concept
Research
Powder metallurgical development of aluminium
foam production by introduction of foamable bulk
material
Pulvermetallurgische Weiterentwicklung der Aluminiumschaumherstellung durch Einführung schäumbaren Schüttguts
Research
Erscheinungstermin: 3. März 2008
Anzeigenschluss:
15. Februar 2008
Redaktionsschluss: 14. Februar 2008
Date of publication: 3 March 2008
Advertisement deadline: 15 February 2008
Editorial deadline: 14 February 2008
Abonnement-Bestellung
Subscription-Order
Ja, wir möchten die Zeitschrift ALUMINIUM ab sofort
zum Jahresbezugspreis von EUR 285,- inkl. Mehrwertsteuer (Ausland EUR 289,-) und Versandkosten abonnieren.
Das Magazin erscheint zehn Mal pro Jahr.
Das Abonnement kann mit einer sechswöchigen Frist
zum Bezugsjahresende gekündigt werden.
Yes, we want to subscribe ALUMINIUM. The rate is
EUR 289.00 per year incl. postage. Outside Europe
US$ 375.00 incl. surface mail, air mail plus US$ 82.00
The magazine is published ten times a year.
Cancellations six weeks prior to the end of a
subscription year.
Name / name
Firma / company
Anschrift / address
Umsatzsteuer-Ident.-Nr. / VAT Reg.-No.
Datum / date
Unterschrift/Signature
Fax: +49 (0) 511 73 04 157
130
ALUMINIUM · 1-2/2008
4
Media-Informationen
2008
Termin- und
Themenplan
Giesel Verlag GmbH, Rehkamp 3, D-30916 Isernhagen, Telefon +49(0)511 / 7304-0, Telefax +49(0)511 / 7304-157
Ausgabe
Termine
1/2
ET: 05. 02.
AS: 21. 01.
RS: 18. 01.
3
ET: 03. 03.
AS: 15. 02.
RS: 14. 02.
4
ET: 04. 04.
AS: 21. 03.
RS: 20. 03.
5
ET: 02. 05.
AS: 18. 04.
RS: 17. 04.
6
ET: 02. 06.
AS: 16. 05.
RS: 15. 05.
7/8
ET: 01. 08.
AS: 17. 07.
RS: 15. 07.
9
ET: 01. 09.
AS: 15. 08.
RS: 14. 08.
10
ET: 02. 10.
AS: 17. 09.
RS: 16. 09.
11
ET: 03. 11.
AS: 17. 10.
RS: 16. 10.
12
ET: 01. 12.
AS: 14. 11.
RS: 13. 11.
Fachteil / Märkte /
Anwendungen
Themenschwerpunkt / Special
Messen /
Veranstaltungen
Die internationale Hüttenindustrie:
Verfahren, Anlagen, neue Projekte, Ausrüstungen
und Bezugsquellen
Gezielte Verbreitung in internationalen Hütten und
Umschmelzwerken
Fachberichte:
Casthouse Solutions
ALUMINIUM India 2008
22. - 24. 2. 2008
Mumbai, Indien
TMS Annual Meeting
& Exhibition
9. - 13. 3. 2008
New Orleans, USA
Recycling und Schmelztechnologien:
Branchen- und Marktentwicklung, internationale
Herausforderungen, Technologietrends, Ausrüstungen
und Bezugsquellen
Marktbericht:
China / Asien
Euroguss
11. - 13. 3. 2008
Nürnberg
Aluminiumbearbeitung:
Neue Entwicklungen und Trends, Verfahren,
Werkzeuge und Maschinen
Märkte:
Aluminium in der Verpackung
Hannover Messe
21. - 25. 4. 2008
Metef
9. - 12. 4. 2008
Brescia, Italien
Die internationale Strangpressindustrie:
Maschinen und Anlagen, Technologien, Messund Regeltechnik, Projekte, F&E
Gezielte Verbreitung in der internationalen
Strangpressbranche
Profilbearbeitung:
Spanen, Umformen, Fügen, etc.
ALUMINIUM CHINA 2008
28. - 30. 5. 2008
Guangzhou, China
Aluminiumguss:
Neue Technologien, Anlagen, Gießöfen, Formenbau,
Mess- und Regelungstechnik, Ausrüstungen und
Bezugsquellen
Marktbericht:
Produkte und Anwendungen aus
Aluminiumguss
O&S
3. - 5. 6. 2008
Stuttgart
euroLITE
24. - 26. 6. 2008, Salzburg
Vorschauf auf ALUMINIUM 2008:
Aussteller stellen sich vor,
detaillierte Vorberichte
Wärmebehandlung von
Aluminium:
Anlagen, Verfahren, Projekte,
Ausrüstungen
Vorschauf auf ALUMINIUM 2008:
Vorberichte, Firmenporträts,
Aussteller-Interviews und weitere
Informationen im Vorfeld der Messe
Leichtbautrends:
Anwendungen, Werkstoffe,
Verfahren, Strategie
ALUMINIUM 2008
23. - 25. 9. 2008, Essen
11. Int. Conf. on
Aluminium Alloy
22. - 26. 9. 2008, Aachen
Die internationale Walzwerkindustrie:
Walzen, Bandguss, Bandbehandlung – neue Technologien, Maschinen, Ausrüstungen und Bezugsquellen
Gezielte Verbreitung in der intern. Walzwerkbranche
Marktberichte:
Die deutsche und europäische Walzbranche
Aluminiumblech:
Verarbeitung und Anwendung
Interpart
7. - 9. 10. 2008, Karlsruhe
SURFACTS
7. - 9. 10. 2008, Karlsruhe
EuroBlech 2008
21. - 25. 10. 2008, Hannover
parts2clean
28. - 30. 10. 2008, Stuttgart
Oberflächentechnik:
Verfahren, Anlagen, Anwendungen, Qualitätsmanagement, Liefermöglichkeiten
Märkte:
Aluminium im Verkehr
Fügetechniken:
Technologien, Anlagen, Verfahren, Ausrüstungen,
Anwendungen
Schweißen von Aluminium:
Aktuelle Entwicklungen
Märkte:
Aluminium im Bauwesen
Die Themenschwerpunkte bestimmen nicht den Gesamtinhalt. Aktuelle Beiträge ergänzen die jeweilige Berichterstattung. Änderungen vorbehalten.
ET = Erscheinungstermin
Bau 2009
12. - 17. 1. 2009
München
AS = Anzeigenschluss
RS = Redaktionsschluss
5
Simply closer to
your products.
Your technology partner in the aluminum industry.
How do we meet the growing demands of our customers in the aluminum industry worldwide? By supplying all-inclusive mechatronic solutions. Whatever
you want to manufacture from this material, or what
product quality you aim to achieve – at SMS Demag
we know what it takes. That’s because we listen!
And because we draw on our holistic process know-
how and experience. Our plants – whether new facilities, conversions or revamps – always ensure that our
solutions encompass the latest developments in aluminum production and processing.
Always closer to you – SMS Demag.
MEETING your EXPECTATIONS
SMS DEMAG AG
Eduard-Schloemann-Strasse 4
40237 Düsseldorf, Germany
Phone: +49 (0) 211 881-0
Fax:
+49 (0) 211 881-4902
E-mail: [email protected]
Internet: www.sms-demag.com