Recall from Math 141 Integration Basics Fundamental Theorem of

Commentaires

Transcription

Recall from Math 141 Integration Basics Fundamental Theorem of
Recall from Math 141
Integration Basics
Fundamental Theorem of Calculus (FTC)
Let f : [a, b] → R be a continuous function.
Let F : [a, b] → R be a function.
• If F is an antiderivative of f on [a, b] (i.e. F 0 (x) = f (x) for each x ∈ [a, b]), then
Z b
Z b
f (x) dx ≡
F 0 (x) dx = F (b) − F (a) .
a
a
Rx
• If F (x) = a f (t) dt for each x ∈ [a, b], then F is an antiderivative of f on [a, b], i.e.
Z x
0
F (x) ≡ Dx
f (t) dt = f (x) .
a
Basic Differentiation Rules
If the functions y = f (x) and y = g(x) are differentiable at x and a and b are constants, then:
(1) Dx [af (x) + bg(x)] = af 0 (x) + bg 0 (x)
(2) Dx h[f (x)i · g(x)] = f 0 (x) · g(x) + f (x) · g 0 (x)
0
(x)
− f (x) · g 0 (x)
(3) Dx fg(x)
= f (x) · g(x)[g(x)]
provided g(x) 6= 0 .
2
If f is differentiable at x and g is differentiable at f (x), then:
(4) Dx [g(f (x))] = g 0 (f (x)) f 0 (x) .
On this handout, a (∗) means that you do not have to memorize the formula
but should be able to use the formula if you are given it.
Hyperbolic Trig Functions1
ex + e−x
2
(∗) sinh x
tanh x =
cosh x
(∗)
(∗)
cosh x =
sinh x =
(∗)
coth x =
derivatives
cosh x
sinh x
ex − e−x
2
(∗)
cosh2 x − sinh2 x = 1
(∗)
sech x =
FTC
=⇒
du
dx
du
(∗)
Dx sinh u = cosh u
dx
1
du
(∗)
Dx sinh−1 u = √
2
1 + u dx
1
du
(∗)
Dx cosh−1 u = √
2
u>1
u − 1 dx
Dx cosh u = sinh u
1Hyperbolic
(∗)
csch x =
1
sinh x
integrals
Z
(∗)
1
cosh x
(∗)
sinh u du = cosh u + C
Z
(∗)
cosh u du = sinh u + C
Z
du
(∗)
−1 u
√
= sinh
+C
a
a2 + u2 a>0
Z
du
(∗)
−1 u
√
= cosh
+C
a
u2 − a2 u>a>0
Trig Functions are covered in §7.3, pages 439–447.
16.08.17 (yr.mn.dy)
Page 1 of 4
Integration
Recall from Math 141
Integration Basics
Basic Integral Formulas
FTC
=⇒
derivatives
Dx un = nun−1
integrals
Z
du
dx
du
Dx e = e
dx
u6=0 1 du
Dx ln |u| =
u dx
du
Dx au = au ln a
0 < a 6= 1
dx
1 du
u6=0 1
Dx loga |u| =
0 < a 6= 1
u ln a dx
du
Dx sin u = cos u
dx
du
Dx tan u = sec2 u
dx
du
Dx sec u = sec u tan u
dx
du
Dx cos u = − sin u
dx
du
Dx cot u = − csc2 u
dx
du
Dx csc u = − csc u cot u
dx
1
du
Dx sin−1 u = √
= −Dx cos−1 u
2
1 − u dx
1
du
Dx tan−1 u =
= −Dx cot−1 u
2
1 + u dx
1
du
√
Dx sec−1 u =
= −Dx csc−1 u
2
|u| u − 1 dx
more integrals
u
u
Z
un du
n6=−1
=
un+1
+ C
n+1
eu du = eu + C
Z
du u6=0
= ln |u| + C
u
Z
au
au du =
+ C
ln a
Z
cos u du = sin u + C
Z
sec2 u du = tan u + C
Z
sec u tan u du = sec u + C
Z
sin u du = − cos u + C
Z
csc2 u du = − cot u + C
Z
csc u cot u du = − csc u + C
Z
du
u
a>0
√
+ C
= sin−1
2
2
a
a −u
Z
du
u
a>0 1
tan−1
+ C
=
2
2
a +u
a
a
Z
du
|u|
a>0 1
√
=
sec−1
+C
2
2
a
a
u u −a
Z
tan u du
=
− ln |cos u| + C
=
ln |sec u| + C
cot u du
=
ln |sin u| + C
=
− ln |csc u| + C
sec u du
=
ln |sec u + tan u| + C
=
− ln |sec u − tan u| + C
csc u du
=
− ln |csc u + cot u| + C
=
ln |csc u − cot u| + C
Z
Z
Z
16.08.17 (yr.mn.dy)
Page 2 of 4
Integration
Recall from Math 141
Integration Basics
Generalized Exponential y = bx and Logarithmic y = logb x Functions
with base b where b > 0 but b 6= 1. Also 0 < a 6= 1.
ln ≡ loge
f (x) = bx ≡ ex ln b
: (−∞, ∞) → (0, ∞)
g(x) = logb x ≡ the inverse of the fn. f (x) = b
y = logb x
⇐⇒
(loga b)(logb c) = loga c
x
: (0, ∞) → (−∞, ∞)
x = by
ln x
loga x =
ln a
=⇒
x, y > 0 & r ∈ R
x, y ∈ R & r ∈ R
blogb x = x
logb (bx ) = x
logb 1 = 0
b0 = 1
logb (xy) = logb x + logb y
x
= logb x − logb y
logb
y
logb (xr ) = r(logb x)
bx by = bx+y
bx
= bx−y
by
(bx )r = bxr
x
x x
(ab) = a b
and
a x
b
ax
= x
b
Basic Trig
hypotenuse
cos θ =
adj
hyp
sin θ =
opp
hyp
tan θ =
opp
adj
cot x =
cos x
sin x
sec x =
1
cos x
csc x =
1
sin x
opposite
θ
adjacent
tan x =
sin x
cos x
Basic Inverse Trig Functions
y = sin θ
⇔
θ = sin−1 y
where
−1≤y ≤1
and
y = cos θ
⇔
θ = cos−1 y
where
−1≤y ≤1
and
y = tan θ
⇔
θ = tan−1 y
where
y∈R
and
y = cot θ
⇔
θ = cot−1 y
where
y∈R
and
y = sec θ
⇔
θ = sec−1 y
where
|y| ≥ 1
and
y = csc θ
⇔
θ = csc−1 y
where
|y| ≥ 1
and
16.08.17 (yr.mn.dy)
Page 3 of 4
−π
π
≤θ≤
2
2
0≤θ≤π
−π
π
<θ<
2
2
0<θ<π
π
0 ≤ θ ≤ π , θ 6=
2
−π
π
≤ θ ≤ , θ 6= 0
2
2
Integration
To come in Math 142
Integration Basics
Our Math 142 Course Homepage (CH) is
http://people.math.sc.edu/girardi/w142.html
Integration by Parts
Z
Z
u dv = uv − v du
Trig Identities useful for Integration
Double-Angle Formulas:
cos(2x) = cos2 x − sin2 x
sin(2x) = 2 sin x cos x
Half-Angle Formulas:
cos2 x =
1 + cos(2x)
2
sin2 x =
1 − cos(2x)
2
Addition/Subtraction Formulas:
(∗)
(∗)
cos(s + t) = cos s cos t − sin s sin t
sin(s + t) = sin s cos t + cos s sin t
(∗)
(∗)
cos(s − t) = cos s cos t + sin s sin t
sin(s − t) = sin s cos t − cos s sin t
Trig Substitution
if integrand involves
a2 − u 2
a2 + u 2
u 2 − a2
then make the substitution
u
u = a sin θ ! θ = sin−1
a
−1 u
u = a tan θ ! θ = tan
a
−1 u
u = a sec θ ! θ = sec
a
restriction on θ
−π
π
≤θ≤
2
2
−π
π
<θ<
2
2
π
0 ≤ θ ≤ π , θ 6=
2
Space for your personal notes.
16.08.17 (yr.mn.dy)
Page 4 of 4
Integration

Documents pareils

Calculus Tables

Calculus Tables sec3 u du = sec u tan u + ln |sec u + tan u| + C

Plus en détail

AP Calculus AB Chapter 6 Worksheet

AP Calculus AB Chapter 6 Worksheet  csc u cot udu  2csc u  2csc

Plus en détail

FORMULAS

FORMULAS D I F F E R E N T I AT I O N A N D I N T E G R AT I O N F O R M U L A S Use differentiation and integration tables to supplement differentiation and integration techniques.

Plus en détail