Sensorimotoric Feedback Performance in obese and normal

Transcription

Sensorimotoric Feedback Performance in obese and normal
ORIGINALIA
Sensorimotoric Feedback Performance
Greier K1, Ressle L2
Sensorimotoric Feedback Performance in Obese
and Normal-Weight 11 to 15 Year-Old School Children
Sensomotorische Feedbackleistung bei adipösen und normalgewichtigen 11-15-jährigen
Schülerinnen und Schülern
1University College of Teacher Education Stams, Austria
2University of Applied Science Kufstein, Austria
SummAry
Zusammenfassung
The sensorimotoric feedback performance of obese children and juveniles has
been subject of scientific analysis in a very limited way. Studies show that normalweight children score higher as intensity increases when testing general motor
skills, but there are hardly any results on sensorimotoric feedback performance
up to now. The aim of this study is to compare the static and dynamic balance
of obese and normal-weight school children. Materials and Methodology: Obese
school children (BMI>97. percentile) ages 11 to 15 (n=20) from an obesity rehabilitation centre were tested using a sensorimotoric feedback device and the results
were compared to the results of a control group (n=67) of normal-weight school
children of the same age. Results: The test group of obese school children achieved
significantly lower (p<0.05) scores on tests for static and dynamic balance compared to the control group. Normal-weight school children: Total score 650±71
(SD); obese school children: Total score 492±90 (SD). Conclusion: The low results
of obese school children and juveniles on static and dynamic balance show the necessity of a specific and individual movement program for obese children in order
to counter the existing deficits that may cause restrictions in their everyday life.
Die sensomotorische Feedbackleistung adipöser Kinder und Jugendlicher wurde
in bisherigen Studien noch kaum berücksichtigt. Untersuchungen belegen zwar,
dass mit zunehmender Bewegungsintensität bei Testaufgaben die Unterschiede
zwischen Adipösen und Normalgewichtigen zugunsten der Letztgenannten zunehmen, aber im Bereich der sensomotorischen Feedbackleistung gibt es bis dato
kaum Ergebnisse. Das Ziel dieser Untersuchung ist es, ein Bild der statischen und
dynamischen Gleichgewichtsfähigkeit von adipösen im Vergleich zu normalgewichtigen Schülerinnen und Schülern zu erhalten. Material und Methode: Mittels
eines sensomotorischen Feedbacktestgeräts wurden 11-15-jährige (n=20) adipöse Schülerinnen und Schüler (BMI>97. Perzentil) eines Adipositas-Rehazentrums gestestet und mit einer Gruppe von n=67 normalgewichtigen gleichaltrigen
Jugendlichen verglichen. Ergebnisse: Die Gruppe der adipösen Schülerinnen und
Schüler erzielte gegenüber den Normalgewichtigen sowohl bei den statischen als
auch dynamischen Testungen signifikant (p<0,05) schlechtere Ergebnisse. Die
Normalgewichtigen erreichten beim Gesamtscore mit 650±71 (SD) Scorepunkten eine signifikant höhere Punktezahl als die Adipösen (492±90). Schlussfolgerung: Die schwachen Ergebnisse der adipösen Schülerinnen und Schüler bei
statischen und dynamischen Gleichgewichtsanforderungen zeigen die Notwendigkeit eines gezielten und individuellen Bewegungsprogramms zum Abbau von
sensomotorischen Schwächen auf. Da die Zunahme der Adipositas sehr stark mit
der Zunahme der körperlichen Inaktivität korreliert und durch Bewegungsmangel
grundlegende physische Funktionen eingeschränkt werden, müssen daher besonders bei adipösen Kindern und Jugendlichen Maßnahmen zur Prävention und Rehabilitation motorischer Schwächen und den damit vermutlich einhergehenden
psychischen und sozialen Defiziten getroffen werden.
Key Words: Balance, sensorimotoric Feedback Performance, obesity, school.
Schlüsselwörter: Gleichgewichtsfähigkeit, sensomotorische Feedbackleistung, Fettleibigkeit, Schule.
Introduction
The prevalence of lack of physical activity, overweight and obesity
has increased for all age groups world wide in the last decades. The
increased “domestication” and physical inactivity combined with
the constant availability of food, but also socioeconomic changes are often cited as causes (12,14,21,31,33). Compared to their
normal-weight contemporaries, obese children and juveniles bear
a significantly higher risk of getting obesity-related diseases like
diabetes mellitus or coronary heart disease (32). Several studies
(3, 4, 10, 22) further prove that a significant decrease of motor skills
can be observed during the last years. Besides inferior energetic
and physical condition, a decrease in coordinative abilities, predominantly in the ability to balance (3, 4), can be observed. Several
studies about the motor abilities of overweight and obese children
and juveniles are also available (2, 5, 11, 13, 19, 30). The results of these studies show, that obese children and juveniles for the most part
accepted: December 2011
published online: February 2012
DOI: 10.5960/dzsm.2011.063
Greier K, Ressle L: Sensomotorische Feedbackleistung bei adipösen und normalgewichtigen 11 - 15-jährigen Schülerinnen und Schülern. Dtsch Z Sportmed 63
(2012) 36 - 40.
36Deutsche Zeitschrift für Sportmedizin Jahrgang 63, Nr. 2 (2012)
Sensorimotoric Feedback Performance
have inferior motor abilities as far as endurance and coordinative
abilities are concerned. In contrast to this, there are almost no results concerning the sensorimotoric feedback performance of obese children and juveniles.
Coordinative abilities include a series of skills representing
particular aspects of motor control (18). They enable individuals to
perform motor action in predictable (stereotype) and unpredictable (adaption) situations in a controlled and economic manner and
also promote faster learning of new sports-related movements (9).
Besides the ability to balance, the ability to orientate, differentiate,
rhythmicise, react, adapt and to link are considered to be the most
important coordinative abilities (34).
A well-developed ability to balance is a prerequisite for many
daily activities as well as for sports-related movements and beyond
that an important factor of accident prevention (15,17). According to Fetz (7), sensorimotoric balance is the ability to attain or
maintain an intended state of balance in posture (static) and /or
movement (dynamic).
With the help of a feedback system, study participants are given sensorimotoric tasks and receive a feedback in the form of optical, acoustic or tactile signals concerning the magnitude, intensity
and speed of their motor actions. This results in a comparison of
the internal/subjective perception and the information from the
feedback system, which is normally done by software using a PC
or a laptop computer, enabling a recording of the results (28). The
aim of this study was to analyse the differences in sensorimotoric
feedback performance between obese and normal-weight 11- to
15-year old school children using the MFT® Challenge Disc. The device used in this study provides a higher objectivity and a better
quantification compared to other simple balance devices ( for example a simple T-shaped bar to perform a one legged stance).
ORIGINALIA
Table 1: Description of the Sample.
Group
n
Sex
Average age
(years)
BMI
Normalweigth
67
24 female
43 male
mean = 12,7
± SD = 1,4
mean = 18,8
± SD = 2,1
Obese
20
12 female
8 male
mean = 13,2
± SD = 1,9
mean = 32,3
± SD = 7,7
Figure 1: Testing
the sensorimotoric feedback
performance
using the MFT®
Challenge Disc.
Material and Methodology
The group of participants consisted of 87 school children between
the age of 11 and 15. 20 of them were also patients at an obesity
rehabilitation centre because of their extreme overweight. The remaining 67 participants were local school children (both the school
and the obesity rehabilitation centre “Insula” are within the community of Bischofswiesen in Bavaria, Germany). Only children, juveniles and young adults with a BMI above the 97 th percentile are
admitted to this obesity rehabilitation centre. For this study, a body
mass index (BMI) above the 97 th percentile according to Kromeyer-Hauschild (24) was the base criteria for placing the participants
in the “obesity” group. This was tested and confirmed by collecting
anthropometric data.
The control group was also tested for anthropometric data.
Schools children with a BMI between >90th and <97th percentile were
eliminated from the study because of the very low sample size (n=8).
School children with a BMI above the 97th and below the 10th percentile were not part of the sample. As a consequence, 67 normal-weight
local school children remained as the control group that was compared to the obesity group (n=20) from the obesity rehabilitation centre
“Insula” (Tab. 1). The local school authority approved this study.
Test Device
The sensorimotoric feedback training device MFT® Challenge Disc
was used for this study (Fig. 1). This device consists of a round stanJahrgang 63, Nr. 2 (2012) Deutsche Zeitschrift für Sportmedizin ding plate with a diameter of 420 mm, which is connected to a base
plate by four rubber buffers. Accordingly, the standing plate can
tilt and move in all dimensions. The maximum tilt angle is 12 degrees. Balance-regulating movements of a person standing on the
device result in tilting movements of the standing plate, which are
detected by three-dimensional tilt sensors. The range of measurement of the sensors is 20 degrees with a precision of 0,5 degrees
and a sampling rate of 100 Hz. The data is transferred into software
using an USB cable (28). The balance-regulating movements are
visualised by software using a regulatory circuit on a monitor in
front of the participants. This regulatory circuit is supposed to be
held within a target circle by using fine motor skills. The tests for
this study were all done using the easiest setting (level 5). The exact
procedure of the tests is shown in table 2. In order to prevent neuromuscular exhaustion, the test software implemented ten-second
breaks between the exercises. The MFT® Challenge Disc is functionally similar to the test device for sonsorimotoric balance „Biodex
Balance Systems“®. This device quantifies the dynamic and static
balancing abilities of individuals on an instable surface and delivers
objective, valid and reliable data (1).
In each one of the nine tests a maximum score of 100 points
can be achieved depending on the amount of time the regulatory
circuit is within the target circle. For the evaluation the scores of the
static tests (3, 6, 9) and the scores of the dynamic tests (1, 2, 4, 5, 7,8)
37
ORIGINALIA
Sensorimotoric Feedback Performance
were added up independently and used for further analysis. Beyond
that, the total score of each participant was recorded.
Test Implementation
The obese and normal-weight school children were tested independently and being barefoot in a quiet room in the school in order to
provide an optimal level of concentration. The tests were explained
and a test run was done before the actual tests in order to get familiar with the tests themselves. The participants had to get on the
test device in a two-legged stance with slightly bend knees and the
position of their feet being given by markers on the device (Fig. 1).
Statistics
The analysis of the collected data was done using statistics software SPSS version 15. The data were tested for normal distribution
by applying the Kolmogorov-Smirnov test. The comparison between the obese and the normal-weight children was realised using
a T-tests for independent samples with the significance level being
set at p ≤ 0,05.
Table 2: Test procedure.
Testnumber
Test name
Description of the Task
Duration
[s]
1
Left/right
emerging
The regulatory circuit has to be moved as
quickly as possible to target circles alternately appearing left and right
20
2
Top/bottom
emerging
The regulatory circuit has to be moved as
quickly as possible to target circles alternately appearing on top and on the bottom
20
3
Stabilising
The regulatory circuit has to de stabilised in
the centre of the target circle
20
4
Horizontal
movement
The horizontally moving target circle has
to be followed by the regulatory circle as
precisely as possible
20
5
Vertical
movement
The vertically moving target circle has to be
followed by the regulatory circle as precisely
as possible
20
6
Stabilising
The regulatory circuit has to de stabilised in
the centre of the target circle
20
7
Rotation
clock-wise
The clock-wise moving target circle has
to be followed by the regulatory circle as
precisely as possible
20
8
Rotation counter
clock-wise
The counter clock-wise moving target circle
has to be followed by the regulatory circle as
precisely as possible
20
9
Stabilising
The regulatory circuit has to de stabilised in
the centre of the target circle
20
Results
Comparing the sensorimotoric test results of both groups (obese versus normal-weight) regarding the total score, a significant
difference can be observed. The normal-weight group on average
achieved a total score of 650 ± 71 (SD), which is significantly higher (p < 0,01) than the average score of the obese group with a total
score of 492 ± 90 (SD) (Tab. 3). The results of the normal-weight
and the obese groups, differentiated in static and dynamic balance performance, can be seen in Tab. 4. In the static as well as the
dynamic balance tests, the obese children achieved significantly
(p < 0,01) lower scores. The balancing ability was not influenced by
the sex of the participants (p > 0,1).
Discussion
In this study the sensorimotoric feedback performance of normalweight and obese school children age 11 to 15 were analysed. The
obese children and juveniles scored significantly lower (p < 0,01) in
all tests (total score, static and dynamic balancing abilities). The
lower balancing ability of the tested obese school children is seen
as the main cause for these results. The results of this study are in
line with the results of studies of other authors (20,23). In their studies, for example, a general deficit in the balancing ability of obese
children was identified using body coordination tests for children
(Körperkoordinationstestsfür Kinder - KTK). Prätorius and Milani
(27) criticise these body coordination tests for children in this context, since this set of test does not only test coordinative abilities,
which may distort the results.
According to a study done by Bappert et al. (2), overweight
and obese children and juveniles do not necessarily have to have
a lower of ability when doing isolated static balance tests. In their
study, overweight children did not do significantly worse when performing a one-legged stand (static balance) compared to normalweight children. This could not be confirmed in our study, since
the obese children performed significantly worse when doing static
balance tests compared to the normal-weight children.
Group
Total Score
mean
± SD
Normal-weight
(n=67)
650,4
71,1
Obese
(n=20)
492,6
90,5
Sign.
<0,01
Table 3: Total score of
the balance tests on the
MFT® Challenge Disc of
normal-weight and obese
test groups.
Table 4: Static and dynamic balancing test scores on the MFT® Challenge
Disc of normal-weight and obese test groups.
Group
static
mean
±SD
Normal-weight
(n=67)
86,5
9,5
Obese
(n=20)
66,6
dynamic
Sign.
mean
±SD
65,2
8,2
<0,01
15,5
Sign.
<0,01
48,8
9,1
The test device used in this cross-sectional study gave visual
feedback about the static and dynamic sensorimotoric balance performance of the participants. A good balancing ability is a prerequisite for almost all activities in daily life. Limitations of the balancing
ability often result in a higher risk of falling down and the related
injuries (28). Xiang et al. (35) confirm that the accident risk of obese
individuals is twice as high as it is for normal-weight individuals.
Well-developed coordinative abilities are therefore very important
and, according to Hirtz (17), further play a very important role in
the prevention of accidents and mishaps, besides providing the ability to successfully master every day life. Beyond that, psychosocial
limitations play an important role for obese children and juveniles.
38Deutsche Zeitschrift für Sportmedizin Jahrgang 63, Nr. 2 (2012)
Sensorimotoric Feedback Performance
They are often treated as outsiders and are many times being isolated, especially in school and leisure sports. Because of this they lose
their joy of movement and suffer from low self-esteem. Obese children and juveniles therefore not only suffer from physical effects, but
also from considerable psychological burden (16,25,26).
Since the rise of obesity correlates very highly with the increase of physical inactivity (6, 8,29) and basic physical functions are limited by lack of movement, preventive and rehabilitative measures
to counter motor deficits and the presumably related psychological
and social deficits have to be implemented for obese children and
juveniles. Zeuschner and Freidl (36) in this context refer to the importance of interdisciplinary cooperation of medicine, psychology,
nutritional and sport science. Just like different video games, the
test device used in this study includes several forms of active games
to improve balancing abilities. These could possibly be used by obese children and juveniles to playfully train their balancing abilities,
which could lead not only to a decrease in accident risk, but also to
an increase in self-esteem.
Limitations of this study
The generalizability of the results of this study is limited because of
the low number of participants (n=87). Furthermore, the parameters were only measured at one point of time in this cross-sectional
study. Consistent results in repeated tests would further support the
validity of the results.
Literature
rnold BL, Schmitz RJ: Examination of balance measures produced
A
by the Biodex stability system. J Athl Train 33 (1998) 323 - 327.
2.
Bappert S, Woll A, Bös K: Motorische Leistungsunterschiede bei
über- und normalgewichtigen Kindern im Vorschulalter. Haltung und
Bewegung 23 (2003) 35-37.
3.
Bös K, Mechling H: Dimensionen sportmotorischer Leistungen im
Längsschnitt, in: Ludwig G (Hrsg.): Koordinative Fähigkeiten – Koordinative Kompetenz. Univ. Gesamthochschulverlag, Kassel, 2002, 50 -58.
4. Crasselt W: Entwicklung der körperlich-sportlichen Leistungsfähigkeit von Kindern und Jugendlichen im Zeitraum von 1981 - 1991, in:
Rostock J, Zimmermann K (Hrsg): Bericht zum Kolloquium „Theorie
und Empirie sportmotorischer Fähigkeiten“. Chemnitz, Institutsbericht,
1998, 50-59.
5.
D`Hondt E, Deforche B, De Bourdeaudhuij I, Lenoir M: Childhood obesity affects fine motor skill performance under different postural constraints. Neurosci Lett 440 (Issue 1) (2008) 72 - 75. doi:10.1016/j.
neulet.2008.05.056.
6.
Ehrsam R, Stoffel S, Mensink G, Melges T: Übergewicht und Adipositas in den USA, Deutschland, Österreich und der Schweiz. Dtsch Z
Sportmed 55 (2004) 278-285.
7.
Fetz F: Bewegungslehre der Leibesübungen. Österreichischer Bundesverlag, Wien, 1989.
8. Fogelholm M, Stigman S, Huisman T, Metsämuuronen J: Physical
fitness in adolesents with normal weight and overweight. Scand J Med
Sci Sports 18 (2008) 162-170. doi:10.1111/j.1600-0838.2007.00685.x.
9.
Frey G: Zur Terminologie und Struktur physischer Leistungsfaktoren
und motorischer Fähigkeiten. Leistungssport 7 (1977) 339 - 362.
10.
Gaschler P: Motorik von Kindern und Jugendlichen heute – Eine Generation von „Weicheiern, Schlaffis und Desinteressierten“? (Teil 3). Haltung und Bewegung 21 (2001) 5 - 17.
11.
Graf C, Koch B, Kretschmann-Kandel E, Falkowski G, Christ
H, Coburger S, Lehmacher W, Bjarnason-Wehrens B, Platen P,
Tokarski W, Predel HG, Dordel S: : Correlation between BMI, leisu1.
Jahrgang 63, Nr. 2 (2012) Deutsche Zeitschrift für Sportmedizin ORIGINALIA
re habits and motor abilities in childhood (CHILT-Project). Int J Obes 28
(2004) 22 - 26. doi:10.1038/sj.ijo.0802428.
12.
Graf C, Dordel S, Koch B, Predel HG: Bewegungsmangel und Übergewicht bei Kindern und Jugendlichen. Dtsch Z Sportmed 57 (2006) 220-225.
13.
Graf C, Jouck S, Koch B, Staudenmaier K, von Schlenk D: Motorische Defizite - wie schwer wiegen sie? Übergewicht und Adipositas im
Kinder- und Jugendalter. Monatsschr Kinderheilkd 155 (2007) 631 - 637.
doi:10.1007/s00112-007-1502-0.
14.
Graf C, Starke D: Prävention von Übergewicht und Adipositas im
Kindes- und Jugendalter – vom Modell zur Anwendung. Dtsch Z Sportmed 60 (2009) 108 - 111.
15.
Greier K, Raschner CH: Sensomotorisches Feedbacktraining in der
Volksschule. Bewegungserziehung 64 (2010) 10 - 15.
16.
Hauner H: Komorbiditäten und Komplikationen der Adipositas, in:
Schusdziarra V (Hrsg): Adipositas-Moderne Konzepte für ein Langzeitproblem. Uni-Med Verlag AG, Bremen, 2003, 30 - 38.
17.
Hirtz P: Koordinative Fähigkeiten und Beweglichkeit, in: Meinel K,
Schnabel G (Hrsg): Bewegungslehre-Sportmotorik. Meyer & Meyer Verlag, Aachen, 2007, 212 - 242.
18. Hohmann A, Lames M, Letzelter M: Einführung in die Trainingswissenschaft. Limpert Verlag, Wiebelsheim, 2002.
19.
Kaspar T, Korsten-Reck U, Rücker G, Jotterand S, Bös K, Berg
A: Sportmotorisches Fähigkeiten adipöser Kinder: Vergleich mit einem
Referenzkollektiv und Erfolge des Therapieprogramms FITOC. Aktuell
Ernaehr Med 28 (2003) 300 - 307. doi:10.1055/s-2003-42514.
20. Korsten-Reck U, Bauer S, Keul J: Sports and nutrition – an out-patient programm for adipose children (long- term-experience). Int J Sports
Med 15 (1994) 242 - 248. doi:10.1055/s-2007-1021054.
21.
Korsten-Reck U, Kromeyer-Hauschild K, Korsten K, Rücker G,
Dickhut HH, Berg A: Freiburger Intervention Trial for Obese Children (FITOC): Ergebnisse einer klinischen Beobachtungsstudie. Dtsch Z
Sportmed 57 (2006) 36 - 41.
22.
Korsten-Reck U, Kaspar T, Korsten K, Kromeyer-Hauschild
K, Bös K, Berg A, Dickhuth H: Motor abilities and aerobic fitness of
obese children. Int J Sports Med 28 (2007) 762 - 767. doi:10.1055/s-2007964968.
23. Kretschmann E, Lawrenz A, Lawrenz W, Schmitz H, Nespethal
K, Bjarnason-Wehrens B: Motorische Entwicklung und Leistungsfähigkeit bei adipösen Kindern und Jugendlichen [Abstract des 37. Deutschen Sportärztekongresses Heft 7/8]. Dtsch Z Sportmed 52 (2001) 26.
24.
Kromeyer-Hauschild K, Wabitsch M, Kunze D, Geller F, Geiss
HC, Hesse V, von Hippel A, Jaeger U, Johnsen D, Korte W, Menner
K, Müller G, Müller JM, Niemann-Pilatus A, Remer T, Scaefer
F, Wittchen H, Zabransky S, Zellner K, Ziegler A, Hebebrand
J: Perzentile für den Body-Mass-Index für das Kinder- und Jugendalter
unter Heranziehung verschiedener deutscher Stichproben. Monatsschr
Kinderheilkd 149 (2001) 807 - 818. doi:10.1007/s001120170107.
25.
Must A, Jaques PF, Dallal G, Bajema CJ, Dietz WH: Long –term
morbidity and mortality of overweight adolescents. A follow-up of the
Harvard Growth Study of 1922 to 1935. N Engl J Med 327 (1992) 13501355. doi:10.1056/NEJM199211053271904.
26. Nething K, Stroth S, Wabitsch M, Galm C, Rapp K, Brandstetter S, Berg S, Kresz A, Wartha O, Steinacker JM: Primärprävention von Folgeerkrankungen des Übergewichts bei Kindern und Jugendlichen. Dtsch Z Sportmed 57 (2006) 42 - 45.
27. Prätorius B, Milani TL: Motorische Leistungsfähigkeit bei Kindern:
Koordinations- und Gleichgewichtsfähigkeit: Untersuchungen des Leistungsgefälles zwischen Kindern mit verschiedenen Sozialisationsbedingungen. Dtsch Z Sportmed 55 (2004) 172 - 176.
28.
Raschner C, Lembert S, Mildner E, Platzer HP, Patterson C:
Entwicklung eines sensomotorischen Feedbacktrainingsgerätes für den
begleitenden Einsatz in der neuronalen Rehabilitation. Bewegungstherapie und Gesundheitssport 24 (2008) 241 - 245. doi:10.1055/s-20081077044.
29.
Reinehr T, Michael D, Kersting M: Therapie der Adipositas im Kindes- und Jugendalter. Hogrefe Verlag, Göttingen, 2010.
39
ORIGINALIA
Sensorimotoric Feedback Performance
30. R
oth K, Roth C: Entwicklung koodinativer Fähigkeiten, in: Baur J, Bös
K, Singer R (Hrsg): Handbuch Motorische Entwicklung. Hofmann Verlag, Schorndorf, 2009, 197 - 247.
31.
Steinacker JM: Übergewicht, Adipositas, Gesundheit und Prävention.
Dtsch Z Sportmed 57 (2006) 213.
32.
Wabitsch M, Denzer C: Examination and Diagnostic Procedure, in:
Kiess W, Marcus C, Wabitsch M (Hrsg): Obesity in Childhood and Adolescense. Karger Verlag, Basel, 2004, 30 - 40.
33. Wang Y, Lobstein T: Worldwide trends in childhood overweight and obesity. Int J Pediatr Obes 1 (2006) 11 - 25. doi:10.1080/17477160600586747.
34.
Weineck J: Optimales Training. Leistungsphysiologische Trainingslehre unter besonderer Berücksichtigung des Kinder- und Jugendtrainings.
15. Auflg., Spitta Verlag, Balingen, 2007.
35.
Xiang H, Smith GA, Wilkins JR, Chen G, Grim Hostetler S, Stallones L: Obesity and risk of nonfatal unintentional injuries. Am J Prev
Med 29 (2005) 41 - 45. doi:10.1016/j.amepre.2005.03.013.
36.
Zeuschner V, Freidl W: Ergebnisse eines Gesundheitsförderungsprogramms für Adipöse. Dtsch Z Sportmed 58 (2007) 138 - 143.
Correspondence adress:
Dr. Klaus Greier
Bewegungs- und Sporterziehung
Pädagogische Hochschule (KPH) Stams
Stiftshof 1
6422 Stams
Austria
E-Mail: [email protected]
40Deutsche Zeitschrift für Sportmedizin Jahrgang 63, Nr. 2 (2012)

Documents pareils