Mastering very high speed

Transcription

Mastering very high speed
Mastering very high speed
François Lacôte
Senior vice president
March 2008
A history of speed in France…
1972 Gas turbine unit TGV001 achieved 318km/h (197.6 mph)
1978 Pre-series PSE achieved 260 km/h (161.6 mph)
1981 PSE16 achieved 380km/h (236 mph)
1988 PSE88 achieved with 408.4 km/h (253.8mph)
1989 TGV Atlantique reached 482 km/h (300 mph)
1990 World record of 515.3 km/h (320.3 mph)
2007 New world record of 574.8 km/h (357.2 mph)
The objectives
Explore for the first time the speeds beyond 500 kph
measure and validate under real-life conditions
the aerodynamic, acoustic, dynamic and vibratory phenomena
Total power 20 MW
Validate the critical components of Alstom’s two train platforms:
the TGV Duplex and the AGV
2 TGV East power cars
3 TGV Duplex coaches
2 AGV bogies + traction components
standard production components
The goals
The test train
(the two platforms tested on the test train)
Duplex TGV
AGV range
Running direction
Instrumented active pantograph
R4
M2
R8
Laboratory coach
Instrumented wheel set
Motor trailer
R1
VIP coach
M1
AGV bogies
In partnership with RFF & SNCF
4
Motor bogies
Power car : motor bogie
Gear box :
114,2 km/h per 1000 tr/m
AGV Bogies
Gear box :
116,7 km/h per 1000 tr/m
The V150 train
Main measurements
Command / control traction
• equipment East TGV (concentred power)
• traction AGV (distributed power)
Electrical measurement (voltage, power, etc..)
Dynamics of bogies (Y & Q forces, lateral acceleration)
Dynamics of the train (safety & comfort)
Dynamics and electrical behaviours of pantograph
Speed limits
World speed record : 574.8 km/h
500 km/h
320 km/h
28 runs at speed above 500 km/h
728 km cumulated
Main results : Electrical results
250
Asynchronous motor
•Nominal power 1160 kW
•Maximal power 1950 kW
200
effort (kN)
150
POS - 150 (1950kW)
AGV - 150 (1000kW)
Total RAME V150
100
Traction equipment layout
50
TGV Traction equipment
Motrice 2
0
0
100
200
300
400
500
600
vitesse (km/h)
Bloc moteur 1
Permanent magnet motor
•Nominal power 800 kW
•Maximal power 1000 kW
Bloc moteur 2
TFP
Bloc commun Compresseur
Remorque 4
Coffre self 2
Coffre Traction 2
Coffre commun
TFP
Coffre self 1
Coffre Traction 1
AGV traction equipment for two bogies
Main results : Acoustics-exterior noise
Running direction
M2
R1
R4
R8
M1
Acoustic Imaging
Noise Source Characterization
Evolution du LAeq en fonction de Log(V) pour la rame V150 sur les sites des PK188 & PK195
• KLaeq
~30
Rolling Noise.
V 
Laeq Rame V150 (PK195)
Rame V150 (PK188)
200km/h<V<300km/h
RameV150 (PK188) 200km/h<V<320km/h
  + L0 (V0 ) Laeq
LLaeq
(VRameV150
) = K(PK195)× log
10 
Laeq RameV150 (PK195) V>400km/h
Laeq RameV150 (PK188) V>400km/h
• KRégression
~60-70
Aero-acoustic
Régression logarithmique - V>400km/h
(PK195)
logarithmique - 200km/h<V<300km/h
(PK195)
0 
V
Régression polynomiale (ordre2) -200km/h<V<540km/h (PK188)
Régression logarithmique - 200km/h<V<320km/h (PK188)
Régression polynomiale (ordre 2) - 200km/h<V<575km/h (PK195)
Exterior Noise Evolution
Régression logarithmique - V>400km/h (PK188)
y = 65,026x - 68,773
R2 = 0,939
60 < K < 70
de l'efficacité acoustique de l'écran en fonction de la vitesse au passage
Evolution
Sound
Barrier
performances
vs.
speed and shape
(exemple de
la configuration d'écran n°
1)
20,0
LAeq (dBA)
105
y = 62,457x - 62,29
R2 = 0,9243
y = 51,315x 2 - 220x + 326,64
R2 = 0,9898
K ~ 30
100
320km/h (RameV150)
390km/h (RameV150)
448km/h (RameV150)
472km/h (RameV150)
15,0
320 kph
10,0
y = 57,056x 2 - 248,75x + 362,02
R2 = 0,9943
y = 29,268x + 24,174
R2 = 0,9828
95
5,0
480 kph
0,0
y = 29,306x + 23,637
R2 = 0,9789
-5,0
Global A
8000
6300
5000
4000
3150
2500
2000
1600
1250
800
Tiers d'octave (Hz)
1000
630
500
400
315
250
200
-10,0
160
Log(631)
2,8
80
Log(501)
2,7
125
Log (V/V0) (V0=1)
Log(398)
2,6
100
Log(316)
2,5
63
Log(251)
2,4
50
Log(200)
2,3
40
Log(158)
2,2
32
Log(126)
2,1
25
90
20
110
Gain (dB)
115
Main results : Acoustics-exterior noise
Running direction
M2
R1
R4
R8
Bogie Cavity Characterization
at 300 to 575 kph
Interior Noise Evolution
Niveaux sonore des microphones intérieurs en fonction de la vitesse (Marche M51-04)
Microphones sous bogies : Marche 51_04 à 554,4 km/h
135
92
90
y = 0,052x + 60,419
orm
Rl2a=tf0,993
88
ct
effe
n
tio
ula
Ins dBA
- 10
80
78
Sound level dBA
76
74
72
e
eng
Pass
y = 0,0416x + 53,91
R2 = 0,9868
70 y = 0,136x + 53,286
68
R2 = 0,965
66
64
125
t
men
part
m
o
rc
y = 0,046x + 52,708
R2 = 0,988
62
60
115
AGV
105
95
y = 0,046x + 52,447
R2 = 0,991
58
AGV ~ Trailer TGV ~
[Motor TGV – 2dBA]
Motor
TGV
56
54
52
85
M1b
50
M3b
M6b
M10b
48
150
200
250
300
Vitesse (en km/h)
350
400
450
500
550
600
75
10000
100
1000
50
100
0
10
Niveau sonore en dB(A) (réf: 20µ Pa)
82
P
Trailer
TGV
Sound level dB
84
Niveau sonore en dB (réf : 20µ Pa)
86
M1
Fréquence en Hz
M7
M9
M9'
M2
R8
IWS
ACC Y , ACC Z
IWS
ACC Y , ACC Z
Y,Q Forces Analysis
•
Running direction
AGV
Bogie
TGV Trailer
Bogie
TGV Motor
Bogie
Main results : Railway dynamics
R1
R4
IWS
ACC Y, ACC Z
ACC Y
ACC Z
ACC Y
ACC Z
M1
ACC Y
ACC Z
ACC Y
ACC Z
Carbody and Bogie Acceleration Analysis
Dynamic behaviour
− Measured lateral Y and vertical Q forces remained well under safety limits (50% of margin for
Y forces and 25 % margin for Y/Q), including in high cant deficiency (163 mm at 450 kph)
− Even at very high speed, the comfort level reached in the coaches was very good (comfort
level at 500 kph equivalent to the one of Corail coaches at 200 kph)
− AGV bogies have lower level of acceleration than those of the TGV trailer bogies
− Good correlation between test and calculation is found for the full speed range
•
Switch behaviour
− Very good dynamic behaviour on switch point (28 runs at speed above 500 kph)
The performance
Thank you!
www.alstom.com

Documents pareils